首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2005,17(8):655-661
The first examples of using edge plane pyrolytic graphite electrodes for anodic and cathodic stripping voltammetry (ASV and CSV) are presented, notably the ASV of silver and the CSV of manganese. In the former example, detection limits for silver (based on 3σ) of 8.1 nM and 0.185 nM for 120 s and 300 s accumulation time, respectively, were achievable using the edge plane electrode, which were superior to those observed on glassy carbon, basal plane pyrolytic graphite and boron‐doped diamond electrodes. In the second example, a detection limit for manganese of 0.3 μM was possible which was comparable with that achievable with a boron‐doped diamond electrode but with an increased sensitivity. Comparison of the edge plane pyrolytic graphite electrode with boron‐doped diamond electrodes reveals that the edge plane electrode has comparable detection limits and sensitivities whilst exhibiting a lower signal‐to‐noise ratio and large potential window for use in trace analysis suggesting boron‐doped diamond can be conveniently replaced by edge plane pyrolytic graphite as an electrode material in many applications.  相似文献   

2.
Contamination of groundwater with arsenic (As) is a major health risk through contamination of drinking and irrigation water supplies. In geochemically reducing conditions As is mostly present as As(III), its most toxic species. Various methods exist to determine As in water but these are not suitable for monitoring arsenic speciation at its original pH and without preparation. We present a method that uses cathodic stripping voltammetry (CSV) to determine reactive As(III) at a vibrating, gold, microwire electrode. The As(III) is detected after adsorptive deposition of As(OH)30, followed by a potential scan to measure the reduction current from As(III) to As(0). The method is suitable for waters of pH 7-12, has an analytical range of 1 nM to 100 μM As (0.07-7500 ppb) and a limit of detection of 0.5 nM with a 60 s deposition time. The As speciation protocol involves measuring reactive As(III) by CSV at the original pH and acidification to pH 1 to determine inorganic As(III) + As(V) by anodic stripping voltammetry (ASV) using the same electrode. Total dissolved As is determined by ASV after UV-digestion at pH 1. The method was successfully tested on various raw groundwater samples from boreholes in the UK and West Bengal.  相似文献   

3.
Cathodic stripping voltammetry of trace Mn(II) at carbon film electrodes   总被引:1,自引:0,他引:1  
Filipe OM  Brett CM 《Talanta》2003,61(5):643-650
A sensitive voltammetric method is presented for the determination of tract levels of Mn (II) using carbon film electrodes fabricated from carbon resistors of 2 Ω. Determination of manganese was made by square wave cathodic stripping voltammetry (CSV), with deposition of manganese as manganese dioxide. Chronoamperometric experiments were made to study MnO2 nucleation and growth. As a result, it was found to be necessary to perform electrode conditioning at a more positive potential to initiate MnO2 nucleation. Under optimised conditions the detection limit obtained was 4 nM and the relative standard deviation for eight measurements of 0.22 nM was 5.3%. Interferences from various metal ions on the response CSV of Mn(II) were investigated, namely Cd(II), Ni(II), Cu(II), Cr(VI), Pb(II), Zn(II) and Fe(II). Application to environmental samples was demonstrated.  相似文献   

4.
《Electroanalysis》2017,29(3):686-695
In this work, we report on the determination of trace manganese (Mn) using cathodic stripping voltammetry (CSV) using a microfabricated sensor with a Pt thin‐film working electrode. While an essential trace metal for human health, prolonged exposure to Mn tends to gradually impair our neurological system. The potential sources of Mn exposure make it necessary to monitor the concentration in various sample matrices. Previous work by us and others suggested CSV as an effective method for measuring trace Mn. The analytical performance metrics were characterized and optimized, leading to a calculated limit of detection (LOD) of 16.3 nM (0.9 ppb) in pH 5.5, 0.2 M acetate buffer. Further, we successfully validated Mn determination in surface water with ∼90% accuracy and >97% precision as compared with inductively coupled plasma mass spectrometry (ICP‐MS) “gold standard” measurement. Ultimately, with stable, accurate and precise electrochemical performance, this Pt sensor permits rapid monitoring of Mn in environmental samples, and could potentially be used for point‐of‐use measurements if coupled with portable instrumentation.  相似文献   

5.
Mn concentrations were determined using square‐wave cathodic stripping voltammetry (CSV) with inexpensive, stencil‐printed carbon ink electrodes generated on polypropylene transparency films. Using an optimized pH 5 ammonium acetate buffer and addition of 1,4‐benzoquinone, a detection limit as low as 500 nM (30 ppb) was achieved. Addition of 1,4‐benzoquinone improved peak potential reproducibility and height, while addition of 3.5 % w/w sodium chloride to the background solution approximately doubled the sensitivity (μA/ppm). Tolerance tests with interfering metals were conducted and the method was found to be resilient to chromium(VI), iron(III), magnesium(II), nickel(II), and zinc(II), but susceptible to aluminum(III), copper(II), iron(II), and lead(II) at concentration ratios at or below one. This technique was successfully used to measure Mn levels in yerba mate and green tea samples as an example application.  相似文献   

6.
Determination of the speciation of arsenic in groundwaters, using cathodic stripping voltammetry (CSV), is severely hampered by high levels of iron and manganese. Experiments showed that the interference is eliminated by addition of EDTA, making it possible to determine the arsenic speciation on-site by CSV. This work presents the CSV method to determine As(III) in high-iron or -manganese groundwaters in the field with only minor sample treatment. The method was field-tested in West-Bengal (India) on a series of groundwater samples. Total arsenic was subsequently determined after acidification to pH 1 by anodic stripping voltammetry (ASV). Comparative measurements by ICP-MS as reference method for total As, and by HPLC for its speciation, were used to corroborate the field data in stored samples. Most of the arsenic (78 ± 0.02%) was found to occur as inorganic As(III) in the freshly collected waters, in accordance with previous studies. The data shows that the modified on-site CSV method for As(III) is a good measure of water contamination with As. The EDTA was also found to be effective in stabilising the arsenic speciation for longterm sample storage at room temperature. Without sample preservation, in water exposed to air and sunlight, the As(III) was found to become oxidised to As(V), and Fe(II) oxidised to Fe(III), removing the As(V) by adsorption on precipitating Fe(III)-hydroxides within a few hours.  相似文献   

7.
Antimony(V) determination at an unmodified edge plane pyrolytic graphite (EPPG) electrode using anodic stripping voltammetry (ASV) by depositing beyond the hydrogen wave is shown in this paper. By depositing beyond the hydrogen wave, we report a sensitive method to determine pentavalent antimony at a carbon electrode in 0.25 M HCl. Using differential pulse anodic stripping voltammetry (DPASV), a bare EPPG electrode gave a detection limit of 5.8±0.02 nM without the need for surface modification. This level is greatly within the EU limit for drinking water of 40 nM.  相似文献   

8.
The determination of arsenic in sea and freshwater by anodic stripping voltammetry (ASV) was revisited because of problems related to unstable peaks and inconveniently strong acidic conditions used by existing methods. Contrary to previous work it was found, that As(III) can be determined by ASV using a gold microwire electrode at any pH including the neutral pH typical for natural waters. As(V) on the other hand, requires acidification to pH 1, but this is still a much milder condition than used previously. This is the basis of a new method for the chemical speciation of arsenic in natural waters. The limits of detection are 0.2 nM As(III) at pH 8 and 0.3 nM combined arsenic (III + V) at pH 1 with a 30 s deposition time. These limits are lowered by extending the deposition time. The detection step at pH 8 was stripping chronopotentiometry (SC) as this was found to give a lower detection limit than ASV. Copper is co-determined simultaneously with arsenic. The method was applied successfully to the determination of arsenic as well as copper in samples from the Irish Sea, mineral water and tap water.  相似文献   

9.
A method was developed to determine the biocide pyrithione in natural waters. The method is based on cathodic stripping voltammetry (CSV) in the presence of Triton-X-100, which is used to separate the peak from interfering thiol compounds. Optimised conditions include a Triton-X-100 concentration of 4 ppm and a pH adjusted to 9 using ammonia buffer. The adsorption potential for pyrithione was −0.10 V and the peak occurred at −0.2 to −0.3 V. Detection was by differential-pulse CSV. The detection limit in UV-digested seawater was 1.5 nM for a deposition time of 60 s. In principle, this limit of detection could be lowered by extending the adsorption time, but in practice this may not be possible due to interferences by other organic compounds (surfactants and thiol compounds) in natural waters.  相似文献   

10.
《Electroanalysis》2017,29(4):1124-1130
Due to its numerous applications in the field of metallurgy and its role as an alloying element for slowing down the biodegradation of pure magnesium typically known to have very low corrosion resistance, the need to develop simple and inexpensive methods for determination of cerium is important. Ce3+ was determined by cathodic stripping voltammetry (CSV) using Osteryoung square‐wave voltammetry (OSWV) for the stripping step. Indium tin oxide (ITO) was used as the working electrode because of its very good positive potential range with smooth background current. Under optimized conditions, the calibration plot was linear in the concentration range of 100 nM to 700 nM Ce3+. A calculated detection limit of 5.8 nM was found for a 5 min deposition time at ITO based on the 3σ method. Interference from selected metal ions was also examined, and no significant interferences were observed. The good selectivity of this sensor makes it a good candidate for practical applications such as monitoring Ce3+ released into solution during the biodegradation of Mg−Ce alloys being developed for resorbable biomedical implants.  相似文献   

11.
《Electroanalysis》2017,29(6):1506-1512
Graphene foam is one kind of network of three dimensional (3D) graphene, which inherits the properties of two dimensional graphene and overcomes the aggregation/stacking of graphene sheets. In this work, graphene foam has been characterized by scanning electron microscopy and Raman spectroscopy. A graphene foam electrode was evaluated as a new electrode material by cyclic voltammetry (CV) and used for the detection of trace level of Pb2+ by anodic stripping voltammetry (ASV). Under the optimized condition of deposition potential (‐1.2 V) and deposition time (2 min), the detection limit is estimated to be 40 nM for Pb2+ based on the 3σ method.  相似文献   

12.
Anodic stripping voltammetry (ASV) determination of Pb2+, Cd2+, and Zn2+ was done using metal catalyst free carbon nanotube (MCFCN) electrodes. Osteryoung square wave stripping voltammetry (OSWSV) was selected for detection. The MCFCNTs are synthesized via Carbo Thermal Carbide Conversion method which leads to residual transition metal free in the CNT structure. The new material shows very good results in detecting heavy metal ions, such as Pb2+, Cd2+, and Zn2+. The calculated limits of detection were 13 nM, 32 nM and 50 nM for Pb2+, Cd2+ and Zn2+, respectively with a deposition time of 150 s.  相似文献   

13.
A mercury coated, gold, micro-wire electrode is used here for the determination of iron in seawater by catalytic cathodic stripping voltammetry (CSV) with a limit of detection of 0.1 nM Fe at a 60 s adsorption time. It was found that the electrode surface is stable for extended periods of analyses (at least five days) and that it is reactivated by briefly (2 s) applying a negative potential prior to each scan. Advantages of this electrode over mercury drop electrodes are that metallic mercury use is eliminated and that it can be readily used for flow analysis. This is demonstrated here by the determination of iron in seawater by continuous flow analysis. It is likely that this method can be extended to other elements. Experiments using bismuth coated, carbon fibre, electrodes showed that the bismuth catalyses the oxidation of the important oxidants bromate and hydrogen peroxide, which makes it impossible to use bismuth based electrodes for catalytic CSV involving these oxidants. For this reason mercury coated electrodes retain a major advantage for catalytic voltammetric analyses.  相似文献   

14.
Adsorptive stripping voltammetry (‘formazone-method’) is already known as one of the most sensitive methods for platinum analysis with a detection limit in the low picograms range. In this work, it is shown that the detection limit can be lowered even more by one order of magnitude to 0.2 pg (=1 fmol) Pt in 15 mL electrolyte, corresponding to 68 fmol/L, by applying forced convection during the stripping step of the voltammetric measurement. The sensitivity of the method (given in nA/pg Pt) is enhanced by a factor of 3-5 (in differential pulse mode and 15 mL vial), up to a factor of 30 (using square-wave mode and 3 mL vial). The maximum enhancement factor is limited by the maximum stirrer speed, which can be applied without negative effects on the hanging mercury drop electrode.To check for similar enhancement effects in other types of stripping methods, the behaviour of adsorptive stripping voltammetry for Pt is compared to conventional anodic stripping voltammetry (ASV) of lead, and to adsorptive stripping voltammetry of nickel and cobalt using their dimethylglyoxime (DMG) complexes. No enhancement effect is observed in ASV of lead upon stirring, and the nickel-DMG-system exhibits only a smaller enhancement factor of about 1.5. A reasonable explanation of the higher signal enhancement in the catalytic Pt-formazone-system is the mass transport of reaction products, namely hydrogen, away from the working electrode during the catalytic hydrogen evolution cycle.  相似文献   

15.
A new automated batch method for the determination of ultratrace metals (nanogram per liter level) was developed and validated. Instrumental and chemical parameters affecting the performance of the method were carefully assessed and optimized. A wide range of voltammetric methods under different chemical conditions were tested. Cadmium, lead and copper were determined by anodic stripping voltammetry (ASV), while nickel, cobalt, rhodium and uranium by adsorptive cathodic stripping voltammetry (AdCSV). The figures of merit of all of these methods were determined: very good precision and accuracy were achieved, e.g. relative percentage standard deviation in the 4-13% for ASV and 2-5% for AdCSV.The stripping methods were applied to the determination of cadmium, lead, copper, nickel, cobalt, rhodium and uranium in lake water samples and the results were found to be comparable with ICP-MS data.  相似文献   

16.
Direct electrochemical determination of arsenate (AsV) in neutral pH waters is considered impossible due to electro-inactivity of AsV. AsIII on the other hand is readily plated as As0 on a gold electrode and quantified by anodic stripping voltammetry (ASV). We found that the reduction of AsV to AsIII was mediated by elemental Mn on the electrode surface in a novel redox couple in which 2 electrons are exchanged causing the Mn to be oxidised to MnII. Advantage is taken of this redox couple to enable for the first time the electrochemical determination of AsV in natural waters of neutral pH including seawater by ASV using a manganese-coated gold microwire electrode. Thereto Mn is added to excess (∼1 μM Mn) to the water leading to a Mn coating during the deposition of As on the electrode at a deposition potential of −1.3 V. Deposition of As0 from dissolved AsV caused elemental Mn to be re-oxidised to MnII in a 1:1 molar ratio providing evidence for the reaction mechanism. The deposited AsV is subsequently quantified using an ASV scan. AsIII interferes and should be quantified separately at a more positive deposition potential of −0.9 V. Combined inorganic As is quantified after oxidation of AsIII to AsV using hypochlorite. The microwire electrode was vibrated during the deposition step to improve the sensitivity. The detection limit was 0.2 nM AsV using a deposition time of 180 s.  相似文献   

17.
《Analytical letters》2012,45(5):331-345
Abstract

It is shown that nucleic acid bases and some of their derivatives can be determined by means of cathodic stripping voltammetry (CSV). The limit of detection of adenine is about 2 × 10?9 M. Presence of an excess of DNA does not interfere with the determination of free bases. CSV may be used also for the determination of nucleosides and nucleotides derived from purine bases.  相似文献   

18.
The new iridium oxide film electrode, applied for the determination of lead(II), cadmium(II) and copper(II) traces using differential pulse anodic stripping voltammetry (DP ASV) is presented. The electrode display an interesting stripping voltammetric performance which compares with electrodes commonly used in voltammetry. The deposited film is known as anodically electrodeposited iridium oxide film (AEIROF). The AEIROF electrode is characterized by long‐term stability (more than 40 days) and very good reproducibility of the analytical signals in this time (≤12% for 0.5 μM of lead). The regeneration of iridium film is very simple in a time shorter than 60 seconds. The effects of various factors such as: thickness of AEIROF film, preconcentration potential and time, supporting electrolyte composition, potential interferences are optimized. The detection limit for AEIROF film electrode based on glassy carbon for an accumulation time of 30 s is as low as 7 nM for lead(II). The repeatability of the method at a concentration level of the lead(II) as low as 0.5 μM, expressed as RSD is 2.5% (n=10). The proposed method was successfully applied and validated by studying certified reference material CTA‐OTL‐1. Such an attractive use of ‘mercury–free’ ‐ environmentally friendly electrodes offers great promise to measure trace metals.  相似文献   

19.
Carbon nanotube (CNT) threads are a type of CNT arrays that consist of super long CNTs. CNT threads inherit the advantages of CNTs, while avoiding the potential toxicity caused by individual CNTs. Electrodes based on CNT threads were fabricated and used for simultaneous detection of trace levels of Cu2+, Pb2+ Cd2+ and Zn2+ by anodic stripping voltammetry (ASV). The detection limits are 0.27 nM, 1.5 nM, 1.9 nM and 1.4 nM for Cu2+, Pb2+, Cd2+ and Zn2+, respectively, in 0.1 M acetate buffer pH 4.5. The CNT thread electrode gives well‐defined, reproducible and sharp stripping signals for individual and simultaneous detection of heavy metals.  相似文献   

20.
The aim of this work is to evaluate the efficiency of the determination of As(III) by anodic stripping voltammetry (ASV) using a lateral gold electrode and to study the modifications of the electrode surface during use. Potential waveforms (differential pulse and square wave), potential scan parameters, deposition time, deposition potential and surface cleaning procedure were examined for they effect on arsenic peak intensity and shape. The best responses were obtained with differential pulse potential wave form and diluted 0.25 M HCl as supporting electrolyte. The repeatability, linearity, accuracy and detection limit of the procedure and the interferences of cations and anions in solution were evaluated. The applicability of the procedure for As(III) determination in drinking waters was tested. Cyclic voltammetry (CV) was used to study the electrochemical behaviour of As(III) and for the daily monitoring of electrode surface. Also scanning electron microscopy (SEM) analysis was used to control the electron surface. Finally we evaluated the possibility to apply the equations valid for flow systems also to a stirred system, in order to calculate the number of electrons transferred per molecule during the stripping step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号