首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A dual‐time implicit mesh‐less scheme is presented for calculation of compressible inviscid flow equations. The Taylor series least‐square method is used for approximation of spatial derivatives at each node which leads to a central difference discretization. Several convergence acceleration techniques such as local time stepping, enthalpy damping and residual smoothing are adopted in this approach. The capabilities of the method are demonstrated by flow computations around single and multi‐element airfoils at subsonic, transonic and supersonic flow conditions. Results are presented which indicate good agreements with other reliable finite‐volume results. The computational time is considerably reduced when using the proposed mesh‐less method compared with the explicit mesh‐less and finite‐volume schemes using the same point distributions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Aeroacoustic problems are often multi‐scale and a zonal refinement technique is thus desirable to reduce computational effort while preserving low dissipation and low dispersion errors from the numerical scheme. For that purpose, the multi‐size‐mesh multi‐time‐step algorithm of Tam and Kurbatskii [AIAA Journal, 2000, 38 (8), p. 1331–1339] allows changes by a factor of two between adjacent blocks, accompanied by a doubling in the time step. This local time stepping avoids wasting calculation time, which would result from imposing a unique time step dictated by the smallest grid size for explicit time marching. In the present study, the multi‐size‐mesh multi‐time‐step method is extended to general curvilinear grids by using a suitable coordinate transformation and by performing the necessary interpolations directly in the physical space due to multidimensional interpolations combining order constraints and optimization in the wave number space. A particular attention is paid to the properties of the Adams–Bashforth schemes used for time marching. The optimization of the coefficients by minimizing an error in the wave number space rather than satisfying a formal order is shown to be inefficient for Adams–Bashforth schemes. The accuracy of the extended multi‐size‐mesh multi‐time‐step algorithm is first demonstrated for acoustic propagation on a sinusoidal grid and for a computation of laminar trailing edge noise. In the latter test‐case, the mesh doubling is close to the airfoil and the vortical structures are crossing the doubling interface without affecting the quality of the radiated field. The applicability of the algorithm in three dimensions is eventually demonstrated by computing tonal noise from a moderate Reynolds number flow over an airfoil. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a local domain‐free discretization (DFD) method for the simulation of unsteady flows over moving bodies governed by the incompressible Navier–Stokes equations. The discretization strategy of DFD is that the discrete form of partial differential equations at an interior point may involve some points outside the solution domain. All the mesh points are classified as interior points, exterior dependent points and exterior independent points. The functional values at the exterior dependent points are updated at each time step by the approximate form of solution near the boundary. When the body is moving, only the status of points is changed and the mesh can stay fixed. The issue of ‘freshly cleared nodes/cells’ encountered in usual sharp interface methods does not pose any particular difficulty in the presented method. The Galerkin finite‐element approximation is used for spatial discretization, and the discrete equations are integrated in time via a dual‐time‐stepping scheme based on artificial compressibility. In order to validate the present method for moving‐boundary flow problems, two groups of flow phenomena have been simulated: (1) flows over a fixed circular cylinder, a harmonic in‐line oscillating cylinder in fluid at rest and a transversely oscillating cylinder in uniform flow; (2) flows over a pure pitching airfoil, a heaving–pitching airfoil and a deforming airfoil. The predictions show good agreement with the published numerical results or experimental data. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
We present an efficient finite element method for computing the engineering quantities of interest that are linear functionals of displacement in elasticity based on a posteriori error estimate. The accuracy of quantities is greatly improved by adding the approximate cross inner product of errors in the primal and dual problems, which is calculated with an inexpensive gradient recovery type error estimate, to the quantities obtained from the finite element solution. With less CPU time, the accuracy of the improved quantities obtained with the proposed method on the coarse finite element mesh is similar to that of the quantities obtained from the finite element solutions on the finer mesh. Three quantities related to the local displacement, local stress and stress intensity factor are computed with the proposed method to verify its efficiency.  相似文献   

5.
A finite element technique is presented for the efficient generation of lower and upper bounds to outputs which are linear functionals of the solutions to the incompressible Stokes equations in two space dimensions. The finite element discretization is effected by Crouzeix–Raviart elements, the discontinuous pressure approximation of which is central to this approach. The bounds are based upon the construction of an augmented Lagrangian: the objective is a quadratic ‘energy’ reformulation of the desired output, the constraints are the finite element equilibrium equations (including the incompressibility constraint), and the inter‐sub‐domain continuity conditions on velocity. Appealing to the dual max–min problem for appropriately chosen candidate Lagrange multipliers then yields inexpensive bounds for the output associated with a fine‐mesh discretization. The Lagrange multipliers are generated by exploiting an associated coarse‐mesh approximation. In addition to the requisite coarse‐mesh calculations, the bound technique requires the solution of only local sub‐domain Stokes problems on the fine mesh. The method is illustrated for the Stokes equations, in which the outputs of interest are the flow rate past and the lift force on a body immersed in a channel. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
An Arbitrary Lagrangian–Eulerian method for the calculation of incompressible Navier–Stokes equations in deforming geometries is described. The mesh node connectivity is defined by a Delaunay triangulation of the nodes, whereas the discretized equations are solved using finite volumes defined by the Voronoi dual of the triangulation. For prescribed boundary motion, an automatic node motion algorithm provides smooth motion of the interior nodes. Changes in the connectivity of the nodes are made through the use of local transformations to maintain the mesh as Delaunay. This allows the nodes and their associated Voronoi finite volumes to migrate through the domain in a free manner, without compromising the quality of the mesh. An MAC finite volume solver is applied on the Voronoi dual using a cell‐centred non‐staggered formulation, with cell‐face velocities being calculated by the Rhie–Chow momentum interpolation. Advective fluxes are approximated with the third‐order QUICK differencing scheme. The solver is demonstrated via its application to a driven cavity flow, and the flow about flapping aerofoil geometries. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, an automatic local remeshing method is proposed for merging two or more hybrid meshes consisting of prisms, hexahedra, pyramids and tetrahedra to reduce users' efforts and turnaround time for mesh generation as an extension of the local remeshing method for small devices by Ito et al. (AIAA J. 2009; 47 (5):1270–1276. DOI: 10.2514/1.40875 ). Two types of relationships between two volume meshes are considered: (1) a volume mesh containing the other smaller volume mesh inside (parent–child relationship) and (2) a volume mesh connecting to the other volume mesh (sibling relationship). The primary advantage of the proposed method over the existing ones is that it can handle the geometries in the two hybrid meshes intersecting each other. Two examples are shown to demonstrate the local remeshing method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
基于格子玻尔兹曼方法LBM(Lattice Boltzmann Method)对多块网格方法(Multi-Block)的粗细网格交界结构进行了研究,提出了一种新的优化处理方案。解决了原有网格交界结构存在的三个问题,即两套插值运算造成的程序结构复杂的问题,存储前几个时间步的节点流场数据以备插值运算造成内存浪费的问题和基于时间插值结果进行空间插值计算造成插值误差积累的问题。用一次多点二维空间插值的方式,将原方法的空间和时间双插值,简并成一次空间插值。通过对经典的非定常的圆柱绕流算例和定常的标准顶盖方腔驱动流算例的仿真模拟,验证了交界面处质量、动量及应力的连续性以及网格交界面数据过渡的流畅度,最终验证了改进方法的正确性。数值模拟结果表明,改进后多块算法可实现局部网格细化,进一步推动LBM方法在实际工程问题中的应用。  相似文献   

9.
The weak Lagrange–Galerkin finite element method for the two‐dimensional shallow water equations on adaptive unstructured grids is presented. The equations are written in conservation form and the domains are discretized using triangular elements. Lagrangian methods integrate the governing equations along the characteristic curves, thus being well suited for resolving the non‐linearities introduced by the advection operator of the fluid dynamics equations. An additional fortuitous consequence of using Lagrangian methods is that the resulting spatial operator is self‐adjoint, thereby justifying the use of a Galerkin formulation; this formulation has been proven to be optimal for such differential operators. The weak Lagrange–Galerkin method automatically takes into account the dilation of the control volume, thereby resulting in a conservative scheme. The use of linear triangular elements permits the construction of accurate (by virtue of the second‐order spatial and temporal accuracies of the scheme) and efficient (by virtue of the less stringent Courant–Friedrich–Lewy (CFL) condition of Lagrangian methods) schemes on adaptive unstructured triangular grids. Lagrangian methods are natural candidates for use with adaptive unstructured grids because the resolution of the grid can be increased without having to decrease the time step in order to satisfy stability. An advancing front adaptive unstructured triangular mesh generator is presented. The highlight of this algorithm is that the weak Lagrange–Galerkin method is used to project the conservation variables from the old mesh onto the newly adapted mesh. In addition, two new schemes for computing the characteristic curves are presented: a composite mid‐point rule and a general family of Runge–Kutta schemes. Results for the two‐dimensional advection equation with and without time‐dependent velocity fields are illustrated to confirm the accuracy of the particle trajectories. Results for the two‐dimensional shallow water equations on a non‐linear soliton wave are presented to illustrate the power and flexibility of this strategy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
General Galerkin (G2) is a new computational method for turbulent flow, where a stabilized Galerkin finite element method is used to compute approximate weak solutions to the Navier–Stokes equations directly, without any filtering of the equations as in a standard approach to turbulence simulation, such as large eddy simulation, and thus no Reynolds stresses are introduced, which need modelling. In this paper, G2 is used to compute the drag coefficient cD for the flow past a circular cylinder at Reynolds number Re=3900, for which the flow is turbulent. It is found that it is possible to approximate cD to an accuracy of a few percent, corresponding to the accuracy in experimental results for this problem, using less than 105 mesh points, which makes the simulations possible using a standard PC. The mesh is adaptively refined until a stopping criterion is reached with respect to the error in a chosen output of interest, which in this paper is cD. Both the stopping criterion and the mesh‐refinement strategy are based on a posteriori error estimates, in the form of a space–time integral of residuals times derivatives of the solution of a dual problem, linearized at the approximate solution, and with data coupling to the output of interest. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
In this work we develop a new framework for a posteriori error estimation and detection of anisotropies based on the dual‐weighted residual (DWR) method by Becker and Rannacher. The common approach for anisotropic mesh adaptation is to analyze the Hessian of the solution. Eigenvalues and eigenvectors indicate dominant directions and optimal stretching of elements. However, this approach is firmly linked to energy norm error estimation. Here, we extend the DWR method to anisotropic finite elements allowing for the direct estimation of directional errors with regard to given output functionals. The resulting meshes reflect anisotropic properties of both the solution and the functional. For the optimal measurement of the directional errors, the coarse meshes need some alignment with the dominant anisotropies. Numerical examples will demonstrate the efficiency of this method on various three‐dimensional problems including a well‐known Navier–Stokes benchmark. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Hybrid grids consisting of prisms and tetrahedra are employed for the solution of the 3-D Navier–Stokes equations of incompressible flow. A pressure correction scheme is employed with a finite volume–finite element spatial discretization. The traditional staggered grid formulation has been substituted with a collocated mesh approach which uses fourth-order artificial dissipation. The hybrid grid is refined adaptively in local regions of appreciable flow variations. The scheme operations are performed on an edge-wise basis which unifies treatment of both types of grid elements. The adaptive method is employed for incompressible flows in both single and multiply-connected domains. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we propose a method to solve the problem of floating solids using always a background mesh for the spatial discretization of the fluid domain. The main feature of the method is that it properly accounts for the advection of information as the domain boundary evolves. To achieve this, we use an arbitrary Lagrangian–Eulerian framework, the distinctive characteristic being that at each time step results are projected onto a fixed, background mesh. We pay special attention to the tracking of the various interfaces and their intersections, and to the approximate imposition of coupling conditions between the solid and the fluid. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we present a class of high‐order accurate cell‐centered arbitrary Lagrangian–Eulerian (ALE) one‐step ADER weighted essentially non‐oscillatory (WENO) finite volume schemes for the solution of nonlinear hyperbolic conservation laws on two‐dimensional unstructured triangular meshes. High order of accuracy in space is achieved by a WENO reconstruction algorithm, while a local space–time Galerkin predictor allows the schemes to be high order accurate also in time by using an element‐local weak formulation of the governing PDE on moving meshes. The mesh motion can be computed by choosing among three different node solvers, which are for the first time compared with each other in this article: the node velocity may be obtained either (i) as an arithmetic average among the states surrounding the node, as suggested by Cheng and Shu, or (ii) as a solution of multiple one‐dimensional half‐Riemann problems around a vertex, as suggested by Maire, or (iii) by solving approximately a multidimensional Riemann problem around each vertex of the mesh using the genuinely multidimensional Harten–Lax–van Leer Riemann solver recently proposed by Balsara et al. Once the vertex velocity and thus the new node location have been determined by the node solver, the local mesh motion is then constructed by straight edges connecting the vertex positions at the old time level tn with the new ones at the next time level tn + 1. If necessary, a rezoning step can be introduced here to overcome mesh tangling or highly deformed elements. The final ALE finite volume scheme is based directly on a space–time conservation formulation of the governing PDE system, which therefore makes an additional remapping stage unnecessary, as the ALE fluxes already properly take into account the rezoned geometry. In this sense, our scheme falls into the category of direct ALE methods. Furthermore, the geometric conservation law is satisfied by the scheme by construction. We apply the high‐order algorithm presented in this paper to the Euler equations of compressible gas dynamics as well as to the ideal classical and relativistic magnetohydrodynamic equations. We show numerical convergence results up to fifth order of accuracy in space and time together with some classical numerical test problems for each hyperbolic system under consideration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A parallel, finite element method is presented for the computation of three‐dimensional, free‐surface flows where surface tension effects are significant. The method employs an unstructured tetrahedral mesh, a front‐tracking arbitrary Lagrangian–Eulerian formulation, and fully implicit time integration. Interior mesh motion is accomplished via pseudo‐solid mesh deformation. Surface tension effects are incorporated directly into the momentum equation boundary conditions using surface identities that circumvent the need to compute second derivatives of the surface shape, resulting in a robust representation of capillary phenomena. Sample results are shown for the viscous sintering of glassy ceramic particles. The most serious performance issue is error arising from mesh distortion when boundary motion is significant. This effect can be severe enough to stop the calculations; some simple strategies for improving performance are tested. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
Many problems of interest are characterized by 2 distinctive and disparate scales and a huge multiplicity of similar small‐scale elements. The corresponding scale‐dependent solvability manifests itself in the high gradient flow around each element needing a fine mesh locally and the similar flow patterns among all elements globally. In a block spectral approach making use of the scale‐dependent solvability, the global domain is decomposed into a large number of similar small blocks. The mesh‐pointwise block spectra will establish the block‐block variation, for which only a small set of blocks need to be solved with a fine mesh resolution. The solution can then be very efficiently obtained by coupling the local fine mesh solution and the global coarse mesh solution through a block spectral mapping. Previously, the block spectral method has only been developed for steady flows. The present work extends the methodology to unsteady flows of short temporal and spatial scales (eg, those due to self‐excited unsteady vortices and turbulence disturbances). A source term–based approach is adopted to facilitate a two‐way coupling in terms of time‐averaged flow solutions. The global coarse base mesh solution provides an appropriate environment and boundary condition to the local fine mesh blocks, while the local fine mesh solution provides the source terms (propagated through the block spectral mapping) to the global coarse mesh domain. The computational method will be presented with several numerical examples and sensitivity studies. The results consistently demonstrate the validity and potential of the proposed approach.  相似文献   

17.
In this paper, we present an approach of dynamic mesh adaptation for simulating complex 3‐dimensional incompressible moving‐boundary flows by immersed boundary methods. Tetrahedral meshes are adapted by a hierarchical refining/coarsening algorithm. Regular refinement is accomplished by dividing 1 tetrahedron into 8 subcells, and irregular refinement is only for eliminating the hanging points. Merging the 8 subcells obtained by regular refinement, the mesh is coarsened. With hierarchical refining/coarsening, mesh adaptivity can be achieved by adjusting the mesh only 1 time for each adaptation period. The level difference between 2 neighboring cells never exceeds 1, and the geometrical quality of mesh does not degrade as the level of adaptive mesh increases. A predictor‐corrector scheme is introduced to eliminate the phase lag between adapted mesh and unsteady solution. The error caused by each solution transferring from the old mesh to the new adapted one is small because most of the nodes on the 2 meshes are coincident. An immersed boundary method named local domain‐free discretization is employed to solve the flow equations. Several numerical experiments have been conducted for 3‐dimensional incompressible moving‐boundary flows. By using the present approach, the number of mesh nodes is reduced greatly while the accuracy of solution can be preserved.  相似文献   

18.
This paper is the first endeavour to present the local domain‐free discretization (DFD) method for the solution of compressible Navier–Stokes/Euler equations in conservative form. The discretization strategy of DFD is that for any complex geometry, there is no need to introduce coordinate transformation and the discrete form of governing equations at an interior point may involve some points outside the solution domain. The functional values at the exterior dependent points are updated at each time step to impose the wall boundary condition by the approximate form of solution near the boundary. Some points inside the solution domain are constructed for the approximate form of solution, and the flow variables at constructed points are evaluated by the linear interpolation on triangles. The numerical schemes used in DFD are the finite element Galerkin method for spatial discretization and the dual‐time scheme for temporal discretization. Some numerical results of compressible flows over fixed and moving bodies are presented to validate the local DFD method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a numerical method for solving the two‐dimensional unsteady incompressible Navier–Stokes equations in a vorticity–velocity formulation. The method is applicable for simulating the nonlinear wave interaction in a two‐dimensional boundary layer flow. It is based on combined compact difference schemes of up to 12th order for discretization of the spatial derivatives on equidistant grids and a fourth‐order five‐ to six‐alternating‐stage Runge–Kutta method for temporal integration. The spatial and temporal schemes are optimized together for the first derivative in a downstream direction to achieve a better spectral resolution. In this method, the dispersion and dissipation errors have been minimized to simulate physical waves accurately. At the same time, the schemes can efficiently suppress numerical grid‐mesh oscillations. The results of test calculations on coarse grids are in good agreement with the linear stability theory and comparable with other works. The accuracy and the efficiency of the current code indicate its potential to be extended to three‐dimensional cases in which full boundary layer transition happens. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
This paper describes three different time integration methods for unsteady incompressible Navier–Stokes equations. Explicit Euler and fractional‐step Adams–Bashford methods are compared with an implicit three‐level method based on a steady‐state SIMPLE method. The implicit solver employs a dual time stepping and an iteration within the time step. The spatial discretization is based on a co‐located finite‐volume technique. The influence of the convergence limits and the time‐step size on the accuracy of the predictions are studied. The efficiency of the different solvers is compared in a vortex‐shedding flow over a cylinder in the Reynolds number range of 100–1600. A high‐Reynolds‐number flow over a biconvex airfoil profile is also computed. The computations are performed in two dimensions. At the low‐Reynolds‐number range the explicit methods appear to be faster by a factor from 5 to 10. In the high‐Reynolds‐number case, the explicit Adams–Bashford method and the implicit method appear to be approximately equally fast while yielding similar results. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号