首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The photoexcited triplet states of frozen solutions of tetraphenyl chlorin (TPC), magnesium tetraphenyl porphyrin (MgTPP) and whole cells of Chlamydomonas reinhardi have been studied by light modulation-EPR spectroscopy. The porphyrins were chosen to be studied as model compounds for chlorophyll molecules, From EPR spectra the zero field splitting parameters (ZFS) were calculated. For TPC, |D| = 0.0364 ± 0.0002 cm-1, |E| = 0.0063 ± 0.0002 cm-1. For MgTPP, |D| = 0.0310 ± 0.0002 cm-1. For chloroplasts, |D| = 0.0280 ± 0.0004 cm-1, |E| = 0.0032 ± 0.0004 cm-1. In all compounds studied, except MgTPP, electron spin polarization (ESP) was observed. From the analysis of the kinetic curves at each canonical orientation we evaluated the spin lattice relaxation rate W, the depopulation rate constants kp, and the ratio between the population rate constants, Ap, at zero magnetic field. For TPC in ethanol-toluene (5:1) kx= (0.70 ± 0.10) × 103 s-1, ky= (0.40 ± 0.07) × 103 s-1, kx= (0.24 ± 0.05) × 103 s-1; Ax:Ay:Az? 1.0:0.6:0.4; W= (2.60 ± 0.40) × 103 s-1. For MgTPP, only the total decay rate constant, kT, was calculated: (1.5 ± 0.2) × 10 s-1 in n-octane and (4.8 ± 0.8) × 10 s-1 in ethanol. The results for TPC and MgTPP are compared to those reported previously for chlorophyll. It is concluded that the dynamics of the photoexcited triplet state in chlorophylls are mainly governed by the chlorin macrocycle. From the EPR spectrum and ZFS parameters of chloroplasts, we propose that both chlorophyll a and chlorophyll b are the main constituents of the EPR spectrum. From the analysis of the kinetic curves we obtain separately the kinetic parameters for chlorophylls a and b, kax= (1.30 ± 0.20) × 103 s-1, kay;= (0.85 ± 0.15) × 103 s-1kax= (0.32 ± 0.05) × 103 s-1; Aax:Aay:Aaz? 1.0:0.7:0.2; Wa= (1.20 ± 0.20) × 103 s-1; kbx= (0.56 ± 0.09) × 103 s-1, kby= (0.30 ± 0.04) × 103 s-1, kbz= (0.06 ± 0.01) × 103 s-1; Abx:Aby:Abx? 1.0:0.6:0.1; Wb= (5.00 ± 0.80) × 103 s-1. These results are very close to those found separately for chlorophyll a and chlorophyll b oligomers in vitro.  相似文献   

2.
Optical detection of magnetic resonance experiments on the triplet state of zinc-substitution chlorophyll b has provided the zero-field splitting and depopulation rate constants for the individual triplet spin sublevels. The zero field triplet state EPR transitions could be observed at 890 MHz and 1085 MHz as either microwave-induced changes in the fluorescence intensity or in the intensity of S0 → Sn absorption. The dynamics experiments show that intersystem crossing from the Zn chlorophyll b triplet state into the ground state occurs primarily through the out-of-plane (lowest energy) spin sublevel.  相似文献   

3.
ZFS constants (in cm?1) and decay rate constants for the lowest triplet state of pheophytins have been determined by ESR: pheophytin a: D = 341 ± 3,E = 33 ± 3, KT = 1050 s?1; pheophytin b: D = 358 ± 8, E = 46 ± 5, KT = 630 s?1; bacteriopheophytin: D = 256 ± 4, E = 54 ± 5/37 ± 5, KT ≈ 4000 s?1. In addition values for the decay rate constants and relative populating rates of the individual spin levels have been obtained; these numbers turn out to be appreciably different from those for the corresponding chlorophylls. For the series pheophytin a, b and bacteriopheophytin we find parallel behaviour with the corresponding chlorophylls. The effects of side group substitution and pyrrole ring reduction on the ZFS constant D can be understood by including configuration interaction between the excited states using the 4-orbital model. The change of the mean triplet decay constant KT upon side group substitution and pyrrole ring reduction follows an energy gap law. Substitution of the central Mg-ion by two protons, however, causes KT to increase; this is attributed to the introduction of an extra promoting mode - of the NH-group - and/or to the presence of low lying nπ* states in pheophytins.  相似文献   

4.
5.
The photoexcited triplet state of phenazine in toluene glasses at 35 K is investigated by light modulation-EPR spectroscopy. From the transient EPR spectra and the kinetics in the three canonical orientations (p = x, y, z) the rate parameters are determined. Thus, the depopulation rate constants kp, the anisotropic spin lattice relaxation rate constants Wp, and the ratios between the population constants Ap are calculated: kx = (2.2 ± 0.3) × 102 s?1, ky = (0.21 ± 0.04) × 102 s?1, kz = (0.06 ± 0.03) × 102 s?1, Wx = (8.6 ± 0.9) × 103 s?1, Wy = (11.0 ± 1.0) × 103 s?1, Wz = (14.0 ± 1.4) × 103 s?1, and Ax: Ay:Az ≈ 1:0.04:0.02. It is concluded therefore that the in-plane spin state |τx > is the active one.  相似文献   

6.
ZFS parameters for the title chlorophylls in both ordinary and fully deuterated form have been determined under experimental conditions that allow the aggregation state of the chlorophylls to be specified. The triplet state spectra are polarized. The electron spin polarization (ESP) can be analyzed by a simple scheme, and is found to be sensitive to the aggregation state of the chlorophyll. Comparison of in vivo and in vitro bacteriochlorophyll spectra supports the chlorophyll special pair proposal for the structure of in vivo photo-reactive chlorophyll.  相似文献   

7.
Triphenylboron BPh3 and the triphenylcarbenium salts C+Ph3/SbCl6? and C+Ph3/BF4? have been investigated by ODMR and emission spectroscopic methods. The zero-field splitting (ZFS) parameters D and E and the decay rate constants of the triplet zero-field levels (ZFL) as well as the phosphorescence spectra were measured. The non-zero E values indicate a symmetry lower than D3 for the Jahn-Teller unstable triplet state of all compounds. The radiative decay of T1 shows a strong delocalization of the triplet wavefunction for C+Ph3, but a strong localization on the benzene rings for BPh3. This is in agreement with MO calculations.  相似文献   

8.
Electron spin polarization in the photoexcited triplet state of tetraphenyl porphyrin was detected at 100°K using EPR technique. The zero field splitting parameters |D| and |E| the free base porphyrin were found to be 0.0369 ± 0.0005 and 0.0082 ± 0.0005 cm?1, respectively.  相似文献   

9.
《Chemical physics》2005,315(3):215-239
Geometrical structure of free-base porphin (H2P) and Mg- and Zn-porphyrins together with their vibrational frequencies and vibronic intensities in phosphorescence are investigated by density functions theory (DFT) with the standard B3LYP functional. These molecules have a closed-shell singlet ground state (S0) and low-lying triplet (T1) excited states of ππ* type. The S0–T1 transition probability and radiative lifetime of phosphorescence (τp) of these molecules are calculated by time-dependent DFT utilizing quadratic response functions for account of spin–orbit coupling (SOC) and electric-dipole transition moments including displacements along active vibrational modes. The infrared and Raman spectra in the ground singlet and first excited triplet states are also studied for proper assignment of vibronic patterns. The long radiative lifetime of free-base porphin phosphorescence (τp  360 s at low temperature limit, 4.2 K) gets considerably shorter for the metalloporphyrins. An order of magnitude reduction of τp is predicted for Mg-porphyrin but no change of phosphorescence polarization is found. A forty times enhancement of the radiative phosphorescence rate constant is obtained for Zn-porphyrin in comparison with the H2P molecule which is accompanied by a strong change of polarization and spin-sublevel radiative activity. A strong vibronic activity of free-base porphin phosphorescence is found for the b2g mode at 430 cm−1, while the 679 and 715 cm−1 vibronic bands of b3g symmetry are less active. These and other out-of-plane vibrations produce considerable changes in the radiative constants of different spin sublevels of the triplet state; they also promote the S1  T1 intersystem crossing. Among the in-plane vibrations the ag mode at 1614 cm−1 is found very active; it produces a long progression in the phosphorescence spectrum. The time-dependent DFT calculations explain the effects of the transition metal atom on phosphorescence of porphyrins and reproduce differences in their phosphorescence and EPR spectra.  相似文献   

10.
曾和平 《中国化学》2002,20(10):1025-1030
In search of new systems with a photoexcited redox pair which exhibits a strong and stable photoinduced absorption band to understand the photophyscial and photochemical properties of electron transfer between fullernes (C60/C70) and organic donor[N,N,N’,N’-tetra(p-methylphenyl)-4,4’-diamino-1,1’-diphenyl sulphide(TPDAS)],we studied characteristic absorption spectra in the near-IR region obtained from 532nm nanosecond laser flash photolysis of a mixture of the fullerenes (C60/C70) and TPDAS in polar solvents.When fullerenes (C60/C70)were photoexcithed,the rise of the radical anion of fullerenes (C60/C70)with the rapid decay of their excited triplet states were observed in benzonitrile.It can be deduced that the electron transfer reaction does take place from TPDAS to excithed triplet state of rullerens(C60/C70).The rate consants(ket)and quantum yiekls(φet) of this process have been also evaluated.  相似文献   

11.
Two dyes (4-nitrostilbene, NST and 4-N,N-dimethylamino-4'-nitrostilbene, DANS) included in zeolites with nanometric channels and different Si : Al ratios have been photoexcited and their triplet state studied by time resolved EPR (TR-EPR). This is the first time that a TR-EPR spectrum of photoexcited triplet states of dyes in zeolites has been observed. The zeolites used were ZSM-5 and mordenite, with either protons or lithium as charge compensating ions, and the aluminium-free porosil. The ZFS parameters and the polarized spin populations have been obtained, and compared with those obtained in glassy solutions and in the organic nanostructured matrix perhydrotriphenylene (PHTP). For (3)DANS in neutral solvents and in PHTP the dimethylamino group is pi conjugated, whereas only its acid form is detected in all the zeolites. In the latter the spectra of the radical cations formed by spontaneous oxidation have also been observed both by cw-EPR and TR-EPR, the last spectra being spin polarized in emission. The mobility of the triplets is discussed, taking into account the spin polarization of the radical cations indicating a strong radical-triplet interaction.  相似文献   

12.
In this review, the contribution of spin chemistry (in particular, magnetic resonance-related chemistry) to the photochemical field is briefly introduced. First, the development of a time-resolved EPR method and its significant application to radical-related physical phenomena and chemical reactions are presented. Second, a reaction-control method by means of electron spin operations is introduced, and several reaction yield-detected magnetic resonance (RYDMR) methods are presented as applications of this concept. One of the most important physical conclusions is the introduction of the concept of “spin phase relaxation” termed singlet–triplet (ST) and triplet–triplet (TT) dephasing, instead of the traditional concepts of longitudinal (T1) and transversal relaxations (T2). The effects of strong microwave power on the RYDMR spectrum and time-domain data are analyzed according to this concept. Furthermore, a new detection method is introduced, termed “photoconductivity detected magnetic resonance” (PCDMR), which is applicable exclusively to the system of charge transfer reactions.  相似文献   

13.
From the linear correlation of the chemical shift (19F) in compounds R-C≡C-C6H4-F-p (reference PhF, solvent to-luene) with the Hammett σ p constants of substituents R, the σ p constants of organometallic substituents R [Cp(CO)3Mo, Cp(CO)3W, Cp(CO)2Fe, Cp(PPh3)Ni, Ph2Bi, Ph2Sb, Ph3Sn] were calculated. The logarithm of the rate constant of magnesium oxidation with compounds RCl linearly correlates with the σ p constants of the organometallic groups R.  相似文献   

14.
Large separation of magnetic levels and slow relaxation in metal complexes are desirable properties of single-molecule magnets (SMMs). Spin-phonon coupling (interactions of magnetic levels with phonons) is ubiquitous, leading to magnetic relaxation and loss of memory in SMMs and quantum coherence in qubits. Direct observation of magnetic transitions and spin-phonon coupling in molecules is challenging. We have found that far-IR magnetic spectra (FIRMS) of Co(PPh3)2X2 ( Co-X ; X=Cl, Br, I) reveal rarely observed spin-phonon coupling as avoided crossings between magnetic and u-symmetry phonon transitions. Inelastic neutron scattering (INS) gives phonon spectra. Calculations using VASP and phonopy programs gave phonon symmetries and movies. Magnetic transitions among zero-field split (ZFS) levels of the S=3/2 electronic ground state were probed by INS, high-frequency and -field EPR (HFEPR), FIRMS, and frequency-domain FT terahertz EPR (FD-FT THz-EPR), giving magnetic excitation spectra and determining ZFS parameters (D, E) and g values. Ligand-field theory (LFT) was used to analyze earlier electronic absorption spectra and give calculated ZFS parameters matching those from the experiments. DFT calculations also gave spin densities in Co-X , showing that the larger Co(II) spin density in a molecule, the larger its ZFS magnitude. The current work reveals dynamics of magnetic and phonon excitations in SMMs. Studies of such couplings in the future would help to understand how spin-phonon coupling may lead to magnetic relaxation and develop guidance to control such coupling.  相似文献   

15.
We have calculated solvent effects on the zero-field splitting (ZFS) constants induced by electron spin–spin coupling (SSC) in the low-lying triplet states of azaaromatic molecules in solutions using multiconfiguration self-consistent-field wave functions and the polarizable continuum model. The second-order spin–orbit coupling (SOC) contribution to the splitting of the 3* states is found to be almost negligible, and the calculations therefore provide a good estimate of the ZFS parameters and their solvent dependence based only on the electron spin–spin coupling expectation values. The correlation between the shift in the ZFS and the phosphorescence frequency that has been observed in optically detected magnetic resonance experiments in low-temperature glasses is supported by our direct SSC calculations without taking SOC into account. This makes it possible to distinguish between the two theories that earlier were proposed to explain the inhomogeneous broadening of triplet state spectra, and discard the one that is exclusively based on the SOC-induced mixing of the singlet and triplet states.Contribution to the Jacopo Tomasi Honorary IssueAcknowledgments. This work was supported (B. M.) by the Swedish Royal Academy of Science (KVA). This work was also supported by the Norwegian Research Council through a grant of computer time from the Program for Supercomputing. We are grateful to B. Schimmelpfenning for his valuable assistance in the computations.  相似文献   

16.
We report on the discovery and detailed exploration of the unconventional photo-switching mechanism in metallofullerenes, in which the energy of the photon absorbed by the carbon cage π-system is transformed to mechanical motion of the endohedral cluster accompanied by accumulation of spin density on the metal atoms. Comprehensive photophysical and electron paramagnetic resonance (EPR) studies augmented by theoretical modelling are performed to address the phenomenon of the light-induced photo-switching and triplet state spin dynamics in a series of YxSc3−xN@C80 (x = 0–3) nitride clusterfullerenes. Variable temperature and time-resolved photoluminescence studies revealed a strong dependence of their photophysical properties on the number of Sc atoms in the cluster. All molecules in the series exhibit temperature-dependent luminescence assigned to the near-infrared thermally-activated delayed fluorescence (TADF) and phosphorescence. The emission wavelengths and Stokes shift increase systematically with the number of Sc atoms in the endohedral cluster, whereas the triplet state lifetime and S1–T1 gap decrease in this row. For Sc3N@C80, we also applied photoelectron spectroscopy to obtain the triplet state energy as well as the electron affinity. Spin distribution and dynamics in the triplet states are then studied by light-induced pulsed EPR and ENDOR spectroscopies. The spin–lattice relaxation times and triplet state lifetimes are determined from the temporal evolution of the electron spin echo after the laser pulse. Well resolved ENDOR spectra of triplets with a rich structure caused by the hyperfine and quadrupolar interactions with 14N, 45Sc, and 89Y nuclear spins are obtained. The systematic increase of the metal contribution to the triplet spin density from Y3N to Sc3N found in the ENDOR study points to a substantial fullerene-to-metal charge transfer in the excited state. These experimental results are rationalized with the help of ground-state and time-dependent DFT calculations, which revealed a substantial variation of the endohedral cluster position in the photoexcited states driven by the predisposition of Sc atoms to maximize their spin population.

Photoexcitation mechanism of YxSc3−xN@C80 metallofullerenes is studied by variable-temperature photoluminescence, advanced EPR techniques, and DFT calculations, revealing photoinduced rotation of the endohedral cluster.  相似文献   

17.
The first X-band EPR spectrum containing only non-overlapping signals of septet pyridyl-2,4,6-trinitrene and triplet pyridylnitrenes is reported. This spectrum was recorded after photolysis of 2,4,6-triazidopyridine in solid argon at 5 K. The zero-field splitting (ZFS) parameters of this trinitrene as well as of intermediate triplet mononitrenes and quintet dinitrenes formed at early stages of the photolysis were determined using the combination of modern computer line-shape spectral simulations and density functional theory (DFT) calculations. It was found that septet pyridyl-2,4,6-trinitrene has the record negative parameter DS = −0.1031 cm−1 among all known to date septet pyridyl-2,4,6-trinitrenes and may be of interest as a model multi-qubit spin system for investigations of quantum computation processing.  相似文献   

18.
Very high-frequency (50–715 GHz) electron paramagnetic resonance (EPR) studies of the tetranuclear CoII complex [Co(hmp)(dmb)Cl]4 (1), where dmb is 3,3-dimethyl-1-butanol and hmp? is the monoanion of 2-hydroxy-methylpyridine, reveal the presence of significant zero-field-splitting (ZFS) within the ground state spin multiplet. Meanwhile, low-temperature hysteresis measurements of 1 (and related CoII4 complexes) provide evidence for slow magnetization relaxation, suggesting that it could be a single-molecule magnet (SMM). However, EPR studies of a Zn analog of 1, doped with a small quantity of CoII, show the ground state of the CoII ions to be an effective spin S = 1/2 Kramers doublet with a highly anisotropic g-tensor. The question then arises as to the origin of the ZFS within the ground state spin multiplet of 1, as well as the slow magnetization relaxation. Here, we consider the effect of anisotropic exchange interactions between the effective spin S = 1/2 Kramers ions within the tetranuclear complex. Such exchange anisotropy arises naturally when one treats the ground state of high-spin CoII as a Kramers doublet. Our model provides an explanation for the ZFS in the ground state observed via EPR, and can also account for qualitative features observed through magnetic measurements.  相似文献   

19.
The phosphorescence spectrum of p-dichlorobenzene has been calculated using multiconfiguration self-consistent-field wave functions and the quadratic response technique. Attention has been paid to the intensity distribution of the singlet–triplet (3B1u1Ag) transition through a number of vibronic subbands. The second order spin–orbit coupling (SOC) contribution to the spin splitting of the 3B1u (3*) state is found to be almost negligible, and the calculations therefore provide a good estimate for the zero-field splitting (ZFS) parameters based only on the electron spin–spin coupling expectation values. Nuclear quadrupole resonance constants for the different Cl isotopes are also calculated to accomplish the ZFS assignment. The electric dipole activity of the spin sublevels in the triplet–singlet transitions to the ground-state vibrational levels is estimated by calculations of derivatives using distorted geometries which are shifted from the equilibrium position along different vibrational modes. A vibrational analysis of the phosphorescence spectrum, based on the SOC-induced mixing of the singlet and triplet states calculated along different vibrational modes, provides reasonable agreement with experimental data.Acknowledgment O. R.-P. would like to thank the European MOLPROP network for support. The authors thank Alexander Baev for fruitful discussions. This work was supported by the Swedish Royal Academy of Science (KVA).  相似文献   

20.
Electron spin exchange rate constants have been measured by ESR spectroscopy for a nitroxide spin probe in a number of solvents, including water. The apparent collision rate constants (k c ) calculated from the spin exchange rate constants showed marked deviations from the Smoluchowsky equation (k c η=const), which were greatest in solvents of lowest viscosity. These effects are attributed to inefficiency of the spin exchange process. Self-diffusion coefficients (D) were measured for diamagnetic analogs of the nitroxide spin probe in similar solvent systems by pulsed field gradient NMR spectroscopy. TheD values gave reasonable agreement when corrected for viscosity (Dη=const). Collision rate constants calculated fromD were in good agreement with those measured by ESR in solvents of high viscosity. Thek c value for the spin probe in water was significantly lower than that in isoviscous organic solvents. This effect is discussed in terms of a hydrophobic hydration shell for the spin probe which acts as an additional barrier to collision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号