首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Internally 1,3‐phenylene‐ and 2,5‐thienylene‐bridged [46]decaphyrins 2 and 3 have been synthesized. While 2 shows modest aromatic character derived from the global 46π‐conjugated circuit, 3 displays larger aromatic character owing to the contribution of an (annuleno)annulene‐type network consisting of two twisted Möbius aromatic thia[28]hexaphyrin segments in addition to the global 46π‐network. Upon protonation, these [46]decaphyrins underwent large structural changes to acquire strong aromaticity. Protonated 3 has been revealed to take on a planar structure composed of fused two triangular thia[28]hexaphyrin segments.  相似文献   

2.
A peripherally strapped [28]hexaphyrin takes a rectangular conformation and exhibits antiaromatic character. A cyclophane‐type dimer consisting of such [28]hexaphyrins was synthesized from hexakis(pentafluorophenyl) [26]hexaphyrin via SNAr reaction with allyl alcohol, one‐pot intra‐ and intermolecular olefin metathesis under improved Hoveyda–Grubbs catalysis, and final reduction with NaBH4. The cyclophane‐type structures of [26]‐ and [28]hexaphyrin dimers have been revealed by X‐ray analysis. Studies on the structural, optical, and electronic properties have led to a conclusion that there is no favorable electronic interaction between the two [28]hexaphyrin segments and thus no indication of 3D aromaticity.  相似文献   

3.
5,20‐Bis(ethoxycarbonyl)‐[28]hexaphyrin was synthesized by acid catalyzed cross‐condensation of meso‐diaryl‐substituted tripyrrane and ethyl 2‐oxoacetate followed by subsequent oxidation. This hexaphyrin was found to be a stable 28π‐antiaromatic compound with a dumbbell‐like conformation. Upon oxidization with PbO2, this [28]hexaphyrin was converted into an aromatic [26]hexaphyrin with a rectangular shape bearing two ester groups at the edge side. The [28]hexaphyrin can incorporate two NiII or CuII metals by using the ester carbonyl groups and three pyrrolic nitrogen atoms to give bis‐NiII and bis‐CuII complexes with essentially the same dumbbell‐like structure. The antiaromatic properties of the [28]hexaphyrin and its metal complexes have been well characterized.  相似文献   

4.
A cross‐conjugated hexaphyrin that carries two meso‐oxacyclohexadienylidenyl (OCH) groups 9 was synthesized from the condensation of 5,10‐bis(pentafluorophenyl)tripyrrane with 3,5‐di‐tert‐butyl‐4‐hydroxybenzaldehyde. The reduction of 9 with NaBH4 afforded the Möbius aromatic [28]hexaphyrin 10 . Bis‐rhodium complex 11 , prepared from the reaction of 10 with [{RhCl(CO)2}2], displays strong Hückel antiaromatic character because of the 28 π electrons that occupy the conjugated circuit on the enforced planar structure. The oxidation of 11 with 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ) yielded complexes 12 and 13 depending upon the reaction conditions. Both 12 and 13 are planar owing to bis‐rhodium metalation. Although complex 12 bears two meso‐OCH groups at the long sides and is quinonoidal and nonaromatic in nature, complex 13 bears 3,5‐di‐tert‐butyl‐4‐hydroxyphenyl and OCH groups and exhibits a moderate diatropic ring current despite its cross‐conjugated electronic circuit. The diatropic ring current increases upon increasing the solvent polarity, most likely due to an increased contribution of an aromatic zwitterionic resonance hybrid.  相似文献   

5.
A coiled structure of meso‐pentafluorophenyl‐substituted [62]tetradecaphyrin 1 was revealed by X‐ray structural analysis. Synthetic protocols were devised to form mono‐ and bis‐ZnII complexes, 1 Zn and 1 Zn2 , selectively. The former displayed a trigonal‐bipyramidal pentacoordinated ZnII ion as a rare case and a cyclic voltammogram exhibiting eleven reversible redox waves. The latter showed a Ci‐symmetric structure with modest Hückel aromaticity owing to a 62 π‐electronic circuit as the largest aromatic molecule to date.  相似文献   

6.
An ab initio, systematic study on the aromaticity involving the group of metalated extended porphyrins, termed meso‐hexakis(pentafluorophenyl)‐substituted[26]hexaphyrin(1.1.1.1.1.1) (HP), was performed for the first time. The aromatic behavior of the system shifted to antiaromatic in the [28]HP analogue, due to the presence of hydrogen atoms that break the orbital symmetry. The absorption bands observed in the experiment were assigned to an intraligand charge transfer, where the intrametallic character is also important. The excited states reveal the absorption of visible light and the possibility of electronic transfer to different systems. We propose a system such as single‐walled carbon nanohorns (SWCNHs), due to their special electronic properties, and predict a novel nanohybrid material. The evidence of electronic communication between both species is presented in this work. The HP aromaticity and the spatial configuration of the interaction with SWCNHs are also related to the strength of electronic transfer among the systems, making the HP metalated antiaromatic species and their corresponding nanohybrids potential candidates to be used as building blocks in photovoltaic cell materials. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
1‐(Triisopropylsilyl)‐3,4‐dichloropyrrole and 1‐(triisopropylsilyl)‐3,4‐difluoropyrrole were conveniently prepared from the corresponding 3,4‐dibromopyrrole by lithiation followed by halogenation. 2,3,17,18‐Tetrahalogeno [26]‐ and [28]hexaphyrins have been prepared by condensation of 3,4‐dihalopyrroles and a dipyrromethane‐dicarbinol. 2,3,17,18‐Tetrahalogenated hexaphyrins display variable structural and electronic properties depending upon the halogen atom and the number of π‐electrons. Tetrabromo[28]hexaphyrin and tetrachloro[28]hexaphyrin were further reduced with excess NaBH4 to furnish meso‐reduced hexaphyrins as the first example of phlorin‐type meso‐aryl‐substituted hexaphyrins.  相似文献   

8.
A rectangular 5,20‐di(4‐pyridyl) [26]hexaphyrin was reduced with NaBH4 to give the corresponding twisted Möbius aromatic [28]hexaphyrin. Subsequent double N‐methylation gave a dicationic 5,20‐di(N‐methyl‐4‐pyridinium) [28]hexaphyrin, which was converted to a doubly zwitterionic and Hückel antiaromatic [28]hexaphyrin upon deprotonation with sodium methoxide.  相似文献   

9.
Three meso‐expanded tetrapyrrolic aromatic macrocycles, including 22π and 26π acetylene–cumulene bridged stretched octamethoxyporphycenes and octamethoxy[22]porphyrin‐(2.2.2.2), are reported, for the first time, by modification of previously reported synthetic methods. This strategy led to an enhancement in the overall yield of their corresponding octaethyl analogues. The methoxy‐substituted expanded porphycenes display slightly blueshifted absorption relative to their ethyl analogues, along with very weak fluorescence, probably due to efficient intramolecular charge transfer (ICT). Additionally, the two‐photon absorption (TPA) cross sections of these macrocycles were evaluated; these are strongly related to core expansion of the porphyrin aromaticity through increased meso‐bridging carbon atoms as well as conformational flexibility and substitution effects at the macrocyclic periphery. In particular, the octamethoxy stretched porphycenes display strong TPA compared with the octaethyl analogues due to the dominant ICT character of methoxy groups with a maximum TPA cross section of 830 GM at 1700 nm observed for 26π‐octamethoxyacetylene–cumuleneporphycene.  相似文献   

10.
The first examples of air‐stable 20π‐electron 5,10,15,20‐tetraaryl‐5,15‐diaza‐5,15‐dihydroporphyrins, their 18π‐electron dications, and the 19π‐electron radical cation were prepared through metal‐templated annulation of nickel(II) bis(5‐arylamino‐3‐chloro‐8‐mesityldipyrrin) complexes followed by oxidation. The neutral 20π‐electron derivatives are antiaromatic and the cationic 18π‐electron derivatives are aromatic in terms of the magnetic criterion of aromaticity. The meso N atoms in these diazaporphyrinoids give rise to characteristic redox and optical properties for the compounds that are not typical of isoelectronic 5,10,15,20‐tetraarylporphyrins.  相似文献   

11.
5,20‐Dibenzoyl [28]hexaphyrin(1.1.1.1.1.1) was synthesized as the first hexaphyrin bearing meso‐aroyl substituents. The meso‐dibenzoyl substituents are hydrogen‐bonded with the pyrrolic protons to stabilize an antiaromatic dumbbell conformer. Core metalation of this hexaphyrin with AuIII afforded rectangular and aromatic [26]hexaphyrin bis‐AuIII complexes, the major isomer of which was reduced with NaBH4 to give its antiaromatic 28π bis‐AuIII complex. This complex allowed facile peripheral metalation with BIII owing to the peripheral benzoyl substituents.  相似文献   

12.
Ruthenium(II) π‐coordination onto [28]hexaphyrins(1.1.1.1.1.1) has been accomplished. Reactions of bis‐AuIII and mono‐AuIII complexes of hexakis(pentafluorophenyl) [28]hexaphyrin with [RuCl2(p‐cymene)]2 in the presence of NaOAc gave the corresponding π‐ruthenium complexes, in which the [(p‐cymene)Ru]II fragment sat on the deprotonated side pyrrole. A similar reaction of the bis‐PdII [26]hexaphyrin complex afforded a triple‐decker complex, in which the two [(p‐cymene)Ru]II fragments sat on both sides of the center of the [26]hexaphyrin framework.  相似文献   

13.
Reaction of various alkoxides led to the selective replacement of the p-fluorine substituents of meso-hexakis(pentafluorophenyl) substituted [26]hexaphyrin. Reaction with isopropyl amine gave meso-hexakis(4-isopropylamino-2,3,5,6-tetrafluorophenyl) substituted [28]hexaphyrin.  相似文献   

14.
Recently, hexaphyrins have emerged as a promising class of π‐conjugated molecules that display a range of interesting electronic, optical, and conformational properties, including the formation of stable Möbius aromatic systems. Besides the Möbius topology, hexaphyrins can adopt a variety of conformations with Hückel and twisted Hückel topologies, which can be interconverted under certain conditions. To determine the optimum conditions for viable Möbius topologies, the conformational preferences of [26]‐ and [28]hexaphyrins and the dynamic interconversion between the Möbius and Hückel topologies were investigated by density functional calculations. In the absence of meso substituents, [26]hexaphyrin prefers a planar dumbbell conformation, strongly aromatic and relatively strain free. The Möbius topology is highly improbable: the most stable tautomer is 33 kcal mol?1 higher in energy than the global minimum. On the other hand, the Möbius conformer of [28]hexaphyrin is only 6.5 kcal mol?1 higher in energy than the most stable dumbbell conformation. This marked difference is due to aromatic stabilization in the Möbius 4n electron macrocycle as opposed to antiaromatic destabilization in the 4n+2 electron system, as revealed by several energetic, magnetic, structural, and reactivity indices of aromaticity. For [28]hexaphyrins, the computed activation barrier for interconversion between the Möbius aromatic and Hückel antiaromatic conformers ranges from 7.2 to 10.2 kcal mol?1, in very good agreement with the available experimental data. The conformation of the hexaphyrin macrocycle is strongly dependent on oxidation state and solvent, and this feature creates a promising platform for the development of molecular switches.  相似文献   

15.
Conformational control over the highly flexible π‐conjugated system of expanded porphyrins is a key step toward the fundamental understanding of aromaticity and for the development of molecular electronics. We have synthesized unprecedented hexaphyrin–cyclodextrin (HCD) capped hybrids in which the hexaphyrin part is constrained in a planar rectangular conformation in either a 26 or a 28 π‐electron oxidation state ( [26] / [28]HCD ). These structures display strong aromaticity and antiaromaticity, respectively, exhibit markedly different chiroptical properties, and are interconvertible upon the addition of DDQ or NaBH(OAc)3, thus affording a rare switchable aromatic–antiaromatic system with a free‐base expanded porphyrin. Conformational analysis revealed discrimination of the two coordination sites of the hexaphyrin, one of which was coupled to a confined asymmetric environment, and fluxional behavior consisting of apparent rotation of the hexaphyrin cap through a shape‐shifting mechanism.  相似文献   

16.
Conformational control over the highly flexible π‐conjugated system of expanded porphyrins is a key step toward the fundamental understanding of aromaticity and for the development of molecular electronics. We have synthesized unprecedented hexaphyrin–cyclodextrin (HCD) capped hybrids in which the hexaphyrin part is constrained in a planar rectangular conformation in either a 26 or a 28 π‐electron oxidation state ( [26] / [28]HCD ). These structures display strong aromaticity and antiaromaticity, respectively, exhibit markedly different chiroptical properties, and are interconvertible upon the addition of DDQ or NaBH(OAc)3, thus affording a rare switchable aromatic–antiaromatic system with a free‐base expanded porphyrin. Conformational analysis revealed discrimination of the two coordination sites of the hexaphyrin, one of which was coupled to a confined asymmetric environment, and fluxional behavior consisting of apparent rotation of the hexaphyrin cap through a shape‐shifting mechanism.  相似文献   

17.
Trifluoroacetic acid‐catalyzed condensation of pyrrole with electron‐deficient and sterically hindered 3,5‐bis(trifluoromethyl)benzaldehyde results in the unexpected production of a series of meso‐3,5‐bis(trifluoromethyl)phenyl‐substituted expanded porphyrins including [22]sapphyrin 2 , N‐fused [22]pentaphyrin 3 , [26]hexaphyrin 4 , and intact [32]heptaphyrin 5 together with the conventional 5,10,15,20‐tetrakis(3,5‐bis(trifluoromethyl)phenyl)porphyrin 1 . These expanded porphyrins are characterized by mass spectrometry, 1H NMR spectroscopy, UV/Vis/NIR absorption spectroscopy, and fluorescence spectroscopy. The optical and electrochemical measurements reveal a decrease in the HOMO–LUMO gap with increasing size of the conjugated macrocycles, and in accordance with the trend, the deactivation of the excited singlet state to the ground state is enhanced.  相似文献   

18.
[26]Hexaphyrin(1.1.1.1.1.1) bearing two 5‐formyl‐2‐pyrrolyl groups at the 5‐ and 20‐positions was prepared by cross‐condensation of 5,10‐bis(pentafluorophenyl)‐substituted tripyrrane with 2,5‐diformylpyrrole as an effective binuclear metal‐coordinating ligand, owing to the two hemiporphyrin‐like NNNN pockets. In fact, metalation of this hexaphyrin with ZnII, CuII, and PdII salts proceed smoothly at room temperature to give the corresponding bismetal complexes that displayed remarkably redshifted absorption spectra reaching deep into near infrared region. These redshifted absorption bands are ascribed, through electrochemical investigations and DFT calculations, to two structural motifs: the N‐metalopyrrole substructure that elevates the HOMO level due to the electron‐donating property and the two coordinated metal ions that serve as Lewis acids to lower the LUMO level.  相似文献   

19.
The four expanded p‐benziporphyrins A,C‐di‐p‐benzi[24]pentaphyrin(1.1.1.1.1), N‐fused A‐p‐benzi[24]pentaphyrin, A,D ‐di‐p‐benzi[28]hexaphyrin(1.1.1.1.1.1), and A,C‐di‐p‐benzi[28]hexaphyrin(1.1.1.1.1.1) were obtained in three‐component Lindsey‐type macrocyclizations. These compounds were explored as macrocyclic ligands and as potential aromaticity switches. A BODIPY‐like difluoroboron complex was obtained from the A,C‐di‐p‐benzi[24]pentaphyrin, whereas A,C‐di‐p‐benzi[28]hexaphyrin yielded a Möbius‐aromatic PdII complex containing fused pyrrole and phenylene subunits. Conformational behavior, tautomerism, and acid‐base chemistry of the new macrocycles were characterized by means of NMR spectroscopy and DFT calculations. Free base N‐fused A‐p‐benzi[24]pentaphyrin showed temperature‐dependent Hückel–Möbius aromaticity switching, whereas the A,C‐di‐p‐benzi[28]hexaphyrin formed a Möbius‐aromatic dication.  相似文献   

20.
Two synthetic methods are developed for halogenations of meso-hexakis(pentafluorophenyl)-substituted [26]hexaphyrin(1.1.1.1.1.1); one is regioselective trans-vicinal-dichlorination with sulfuryl chloride and the other is acid-assisted hydrohalogenation followed by oxidation with DDQ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号