首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On irradiation (350 nm) in benzene solution, dihydropyranone 3 affords predominantly (75%) the cis‐anti‐cis HH‐dimer 4 , but in smaller amounts (12%) also dimer 5 , wherein one of the six‐membered rings is trans‐fused to the (central) cyclobutane ring. The constitution and configuration of 5 was fully elucidated by NMR‐analysis. On contact with SiO2, 5 isomerizes quantitatively to the cis‐anti‐cis HT‐dimer 7 , the structure of which was established by X‐ray crystal‐structure determination.  相似文献   

2.
Tetrakis(diethyl phosphonate), Tetrakis(ethyl phenylphosphinate)‐, and Tetrakis(diphenylphosphine oxide)‐Substituted Phthalocyanines The title compounds 7, 9 , and 11 are obtained by tetramerization of diethyl (3,4‐dicyanophenyl)phosphonate ( 5 ), ethyl (3,4‐dicyanophenyl)phenylphosphinate ( 8 ), and 4‐(diphenylphosphinyl)benzene‐1,2‐dicarbonitrile ( 10 ). The 31P‐NMR spectra of the phthalocyanines 7, 9 , and 11 and of their metal complexes present five to eight signals confirming the formation of four constitutional isomers with the expected C4h, D2h, C2v, and Cs symmetry. In the FAB‐MS of the Zn, Cu, and Ni complexes of 7 and 9 , the peaks of dimeric phthalocyanines are observed. By gel‐permeation chromatography, the monomeric complex [Ni( 7 )] and a dimer [Ni( 7 )]2 can be separated. These dimers differ from the known phthalocyanine dimers, i.e., possibly the P(O)(OEt)2 and P(O)(Ph)(OEt) substituents in 7 and 9 are involved in complexation. The free phosphonic acid complex [Zn( 12 )] and [Cu( 12 )] are H2O‐soluble. In the FAB‐MS of [Zn( 12 )], only the peaks of the dimer are present; the ESI‐MS confirms the existence of the dimer and the metal‐free dimer. In the UV/VIS spectrum of [Zn( 12 )], the hypsochromic shift characteristic for the known type of dimers from 660–700 nm to 620–640 nm is observed. As in the FAB‐MS of [Zn( 12 )], the free phosphinic acid complex [Zn( 13 )] shows only the monomer, an ESI‐MS cannot be obtained for solubility problems. The UV/VIS spectrum of [Zn( 13 )] demonstrates the existence of the monomer as well as of the dimer.  相似文献   

3.
In the title compound, {[Sm(4‐pya)3(H2O)2]·2H2O}n [4‐pya is trans‐3‐(4‐pyrid­yl)acrylate, C8H6NO2], each SmIII atom is ten‐coordinated and has a bicapped square‐antiprismatic coordination geometry. There is a crystallographic center of symmetry at the mid‐point of the Sm⋯Sm line within each [Sm(4‐pya)3(H2O)2]2 dimer. Each dimer is inter­connected by two pairs of bridging 4‐pya ligands to form a one‐dimensional chain. Neighboring chains are connected via hydrogen bonds to form a three‐dimensional network.  相似文献   

4.
A mesomeso‐linked diphenylamine‐fused porphyrin dimer and its methoxy‐substituted analogue were synthesized from a mesomeso‐linked porphyrin dimer by a reaction sequence involving Ir‐catalyzed β‐selective borylation, iodination, meso‐chlorination, and SNAr reactions with diarylamines followed by electron‐transfer‐mediated intramolecular double C?H/C?I coupling. While these dimers commonly display characteristic split Soret bands and small oxidation potentials, they produced different products upon oxidation with tris(4‐bromophenyl)aminium hexachloroantimonate. Namely, the diphenylamine‐fused porphyrin dimer was converted into a dicationic closed‐shell quinonoidal dimer, while the methoxy‐substituted dimer gave a mesomeso, β‐β doubly linked porphyrin dimer.  相似文献   

5.
The polyfluorinated title compounds, [M Cl2(C16H16F4N2O2)] or [4,4′‐(HCF2CH2OCH2)2‐2,2′‐bpy]M Cl2 [M = Pd, ( 1 ), and M = Pt, ( 2 )], have –C(Hα)2OC(Hβ)2CF2H side chains with H‐atom donors at the α and β sites. The structures of ( 1 ) and ( 2 ) are isomorphous, with the nearly planar (bpy)M Cl2 molecules stacked in columns. Within one column, π‐dimer pairs alternate between a π‐dimer pair reinforced with C—H…Cl hydrogen bonds (α,α) and a π‐dimer pair reinforced with C—Hβ…F(—C) interactions (abbreviated as C—Hβ…F—C,C—Hβ…F—C). The compounds [4,4′‐(CF3CH2OCH2)2‐2,2′‐bpy]M Cl2 [M = Pd, ( 3 ), and M = Pt, ( 4 )] have been reported to be isomorphous [Lu et al. (2012). J. Fluorine Chem. 137 , 54–56], yet with disorder in the fluorous regions. The molecules of ( 3 ) [or ( 4 )] also form similar stacks, but with alternating π‐dimer pairs between the (α,β; α,β) and (β,β) forms. Through (C—)H…Cl hydrogen‐bond interactions, one molecule of ( 1 ) [or ( 2 )] is expanded into an aggregate of two inversion‐related π‐dimer pairs, one pair in the (α,α) form and the other pair in the (C—Hβ…F—C,C—Hβ…F—C) form, with the plane normals making an interplanar angle of 58.24 (3)°. Due to the demands of maintaining a high coordination number around the metal‐bound Cl atoms in molecule ( 1 ) [or ( 2 )], the ponytails of molecule ( 1 ) [or ( 2 )] bend outward; in contrast, the ponytails of molecule ( 3 ) [or ( 4 )] bend inward.  相似文献   

6.
The polyfluorinated title compounds, [MBr2(C18H16F8N2O2)] or [4,4′‐(HCF2CF2CH2OCH2)2‐2,2′‐bpy]MBr2, ( 1 ) (M = Pd and bpy is bipyridine) and ( 2 ) (M = Pt), have –CH(α)2OCH(β)2CF2CF2H side chains with methylene H‐atom donors at the α and β sites, and methine H‐atom donors at the terminal sites, in addition to aromatic H‐atom donors. In contrast to the original expectation of isomorphous structures, ( 1 ) crystallizes in the space group C2/c and ( 2 ) in P21/n, with similar unit‐cell volumes and Z = 4. The asymmetric unit of ( 1 ) is one half of the molecule, which resides on a crystallographic twofold axis. Both ( 1 ) and ( 2 ) display stacking of the molecules, indicating a planar (bpy)MBr2 skeleton in each case. The structure of ( 1 ) exhibits columns with C—H(β)…Br hydrogen bonds between consecutive layers which conforms to a static (β,β) linkage between layers. In the molecular plane, ( 1 ) shows double C—H(α)…Br hydrogen bonds self‐repeating along the b axis, the planar molecules being connected into infinite belts. Compound ( 2 ) has no crystallographic symmetry and forms π‐dimer pairs as supermolecules, which then stack parallel to the a axis. The π‐dimer‐pair supermolecules exhibit (Pt—)Br…Br(—Pt) contacts [3.6937 (7) Å] to neighbouring π‐dimer pairs crosslinking the columns. The structure of ( 2 ) reveals many C—H…F(—C) interactions between F atoms and aromatic C—H groups, in addition to those between F atoms and methylene C—H groups.  相似文献   

7.
A p‐quinodimethane (p‐QDM)‐bridged porphyrin dimer 1 has been prepared for the first time. An unexpected Michael addition reaction took place when we attempted to synthesize compound 1 by reaction of the cross‐conjugated keto‐linked porphyrin dimers 8 a and 8 b with alkynyl/aryl Grignard reagents. Alternatively, compound 1 could be successfully prepared by intramolecular Friedel–Crafts alkylation of the diol‐linked porphyrin dimer 14 with concomitant oxidation in air. Compound 1 shows intense one‐photon absorption (OPA, λmax=955 nm, ε=45400 M ?1 cm?1) and a large two‐photon absorption (TPA) cross‐section (σ(2)max=2080 GM at 1800 nm) in the near‐infrared (NIR) region due to its extended π‐conjugation and quinoidal character. It also exhibits a short singlet excited‐state lifetime of 25 ps. The cyclic voltammogram of 1 displays multiple redox waves with a small electrochemical energy gap of 0.86 eV. The ground‐state geometry, electronic structure, and optical properties of 1 have been further studied by density functional theory (DFT) calculations and compared with those of the keto‐linked dimer 8 b . This research has revealed that incorporation of a p‐QDM unit into the porphyrin framework had a significant impact on its optical and electronic properties, leading to a novel NIR OPA and TPA chromophore.  相似文献   

8.
The structure of caesium(I) 3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olate (CsA), Cs+·C8HN4O2, is related to its luminescence properties. The structure of CsA (triclinic, P) is not isomorphous with previously reported structures (monoclinic, P21/c) of the KA and RbA salts. Nevertheless, the coordination numbers of the metals are equal for all salts (nine). Each anion in the CsA salt is connected by pairs of inversion‐related N—H...O hydrogen bonds to another anion, forming a centrosymmetric dimer. The dimers are linked into infinite ribbons, stacked by means of π–π interactions, thus building up an anionic wall. Time‐dependent density functional theory calculations show that the formation of the dimer shifts the wavelength of the luminescence maximum to the blue region. Shortening the distance between stacked anions in the row [from 3.431 (5) Å for RbA to 3.388 (2) Å for KA to 3.244 (10) Å for CsA] correlates with a redshift of the luminescence maximum from 574 and 580 nm to 596 nm, respectively.  相似文献   

9.
The double “pancake” bonding in the dimers of the six‐membered heterocycles 1,3‐dithia‐2,4,6‐triazine ( 4 ) and 1,3‐dithia‐2,4‐diazine ( 16 ) were investigated by means of high‐level quantum chemical calculations (B3LYP and CCSD(T)). It was found that the S–S dimers, 20 a and 27 , are not the most stable isomers, but the dimers showing short S?N ( 21 a ) and S?C ( 25 , 28 ) bonds. An investigation of the 5‐phenyl‐1,3‐dithia‐2,4,6‐triazine ( 4 b ) yields that the syn dimer with two S?S bonds (2.57 Å) is the most stable one. In this dimer, the phenyl groups are placed on top of each other. The additional dispersion energy of the phenyl rings causes a stabilization of the syn‐S–S (C2v‐like) isomer. As a result, two weak albeit relevant single S?S bonds (2.57 Å) are predicted. These findings contradict the recently published concept of double “pancake” bonding in the dimer 4 b 2.  相似文献   

10.
The title compound, C24H20P+·C9H17NO5S, consists of an organic monovalent cation and an organic monovalent anion, the latter being derived from the TEMPO radical (TEMPO is 2,2,6,6‐tetra­methyl­piperidin‐1‐oxyl). Two inversion‐related anions interact via two –O—H⃛O—S– hydrogen bonds, forming a dimer in which there are no short contacts between the spin centres (–N—O) of the TEMPO(OH)SO3 anions. Furthermore, no significant magnetic interaction is observed between the dimers because the dimer is surrounded by cations. These results are consistent with the paramagnetic behaviour of the title salt.  相似文献   

11.
In the isomorphous title compounds, [Cd2(C8H4O4)2(C19H10ClFN4)2(H2O)2] and [Zn2(C8H4O4)2(C19H10ClFN4)2(H2O)2], the CdII centre is seven‐coordinated by two N atoms from one [2‐(2‐chloro‐6‐fluorophenyl)‐1H‐imidazo[4,5‐f][1,10]phenanthroline (L) ligand, one water O atom and four carboxylate O atoms from two different benzene‐1,2‐dicarboxylate (1,2‐bdc) ligands in a distorted pentagonal–bipyramidal coordination, while the ZnII centre is six‐coordinated by two N atoms from one L ligand, one water O atom and three carboxylate O atoms from two different 1,2‐bdc ligands in a distorted octahedral coordination. Each pair of adjacent metal centres is bridged by two 1,2‐bdc ligands to form a dimeric structure. In the dimer, each L ligand coordinates one metal centre. The dimer is centrosymmetric, with a crystallographic inversion centre midway between the two metal centres. The aromatic interactions lead the dimers to form a two‐dimensional supramolecular architecture. Finally, O—H...O and N—H...O hydrogen bonds reinforce the two‐dimensional structures of the two compounds.  相似文献   

12.
In 2‐amino‐4,6‐di­methoxy‐5‐nitro­pyrimidine, C6H8N4O4, the mol­ecules are linked by one N—H⋯N and one N—H⋯O hydrogen bond to form sheets built from alternating R(8) and R(32) rings. In isomeric 4‐amino‐2,6‐di­methoxy‐5‐nitro­pyrimidine, C6H8N4O4, which crystallizes with Z′ = 2 in P, the two independent mol­ecules are linked into a dimer by two independent N—H⋯N hydrogen bonds. These dimers are linked into sheets by a combination of two‐centre C—H⋯O and three‐centre C—H⋯(O)2 hydrogen bonds, and the sheets are further linked by two independent aromatic π–π‐stacking interactions to form a three‐dimensional structure.  相似文献   

13.
The title compound, C15H20N4O, has been synthesized as an AADD recognition unit for quadruple hydrogen bonds. All non‐H atoms of the mol­ecule apart from two methyl groups of the tert‐butyl group lie in a common plane. An intramolecular hydrogen bond is formed connecting two N atoms. In the solid state, the title compound crystallizes as a centrosymmetric dimer connected by N—H?O=C interactions with an N?O distance of 2.824 (2) Å.  相似文献   

14.
The tri‐tert‐butylphenalenyl (TBPLY) radical exists as a π dimer in the crystal form with perfect overlapping of the singly occupied molecular orbitals (SOMOs) causing strong antiferromagnetic exchange interactions. 2,5‐Di‐tert‐butyl‐6‐oxophenalenoxyl (6OPO) is a phenalenyl‐based air‐stable neutral π radical with extensive spin delocalization and is a counter analogue of phenalenyl in terms of the topological symmetry of the spin density distribution. X‐ray crystal structure analyses showed that 8‐tert‐butyl‐ and 8‐(p‐XC6H4)‐6OPOs (X=I, Br) also form π dimers in the crystalline state. The π‐dimeric structure of 8‐tert‐butyl‐6OPO is seemingly similar to that of TBPLY even though its SOMO–SOMO overlap is small compared with that of TBPLY. The 8‐(p‐XC6H4) derivatives form slipped stacking π dimers in which the SOMO–SOMO overlaps are greater than in 8‐tert‐butyl‐6OPO, but still smaller than in TBPLY. The solid‐state electronic spectra of the 6OPO derivatives show much weaker intradimer charge‐transfer bands, and SQUID measurements for 8‐(p‐BrC6H4)‐6OPO show a weak antiferromagnetic exchange interaction in the π dimer. These results demonstrate that the control of the spin distribution patterns of the phenalenyl skeleton switches the mode of exchange interaction within the phenalenyl‐based π dimer. The formation of the relevant multicenter–two‐electron bonds is discussed.  相似文献   

15.
The molecules of (2RS,4SR)‐2‐exo‐(5‐bromo‐2‐thienyl)‐7‐chloro‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C14H11BrClNOS, (I), are linked into cyclic centrosymmetric dimers by C—H...π(thienyl) hydrogen bonds. Each such dimer makes rather short Br...Br contacts with two other dimers. In (2RS,4SR)‐2‐exo‐(5‐methyl‐2‐thienyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C15H15NOS, (II), a combination of C—H...O and C—H...π(thienyl) hydrogen bonds links the molecules into chains of rings. A more complex chain of rings is formed in (2RS,4SR)‐7‐chloro‐2‐exo‐(5‐methyl‐2‐thienyl)‐2,3,4,5‐tetrahydro‐1H‐1,4‐epoxy‐1‐benzazepine, C15H14ClNOS, (III), built from a combination of two independent C—H...O hydrogen bonds, one C—H...π(arene) hydrogen bond and one C—H...π(thienyl) hydrogen bond.  相似文献   

16.
The reaction of NiCl2 and 3‐hydrazine‐4‐amino‐1,2,4‐triazole (Hatr) in the mixed solvent of EtOH and H2O yielded a dimer compound ([Ni2(Hatr)2(H2O)2(EtOH)2Cl2]Cl2·EtOH) with water and EtOH molecules coordinated to nickle ions. It crystallized in trigonal space group R‐3, a=b=29.67(1) Å, c=8.95(7) Å, β=120(1)°, as determined by single‐crystal X‐ray diffraction. Then, they were fully characterized by the IR spectroscopy, differential scanning calorimetry (DSC), thermogravimetry (TG), and elemental analysis.  相似文献   

17.
The title structure, [Rh2(C7H5O3)4(C2H6OS)2]·[Rh2(C4H7­O2)4(C2H6OS)2]·2C2H6O, contains two discrete neutral Rh–Rh dimers cocrystallized as the ethanol disolvate. Each dimer is situated on an inversion center. The butyrate chain displays disorder in one C‐atom position. In each dimer, the di­methyl sulfoxide ligand (dmso) is bound via S, as expected. The ethanol is a hydrogen‐bond acceptor for one p‐hydroxy­benzoate hydroxyl group and acts as a hydrogen‐bond donor to the dmso O atom of a neighboring p‐hydroxy­benzoate dirhodium complex. A third hydrogen bond is formed from the other p‐hydroxy­benzoate hydroxyl group to the dmso O atom of a butyrate–dirhodium complex.  相似文献   

18.
Mechanisms and simulations of the induction period and the initial polymerization stages in the nitroxide‐mediated autopolymerization of styrene are discussed. At 120–125 °C and moderate 2,2,4,4‐tetramethyl‐1‐piperidinyloxy (TEMPO) concentrations (0.02–0.08 M), the main source of radicals is the hydrogen abstraction of the Mayo dimer by TEMPO [with the kinetic constant of hydrogen abstraction (kh)]. At higher TEMPO concentrations ([N?] > 0.1 M), this reaction is still dominant, but radical generation by the direct attack against styrene by TEMPO, with kinetic constant of addition kad, also becomes relevant. From previous experimental data and simulations, initial estimates of kh ≈ 1 and kad ≈ 6 × 10?7 L mol?1 s?1 are obtained at 125 °C. From the induction period to the polymerization regime, there is an abrupt change in the dominant mechanism generating radicals because of the sudden decrease in the nitroxide radicals. Under induction‐period conditions, the simulations confirm the validity of the quasi‐steady‐state assumption (QSSA) for the Mayo dimer in this regime; however, after the induction period, the QSSA for the dimer is not valid, and this brings into question the scientific basis of the well‐known expression kth[M]3 (where [M] is the monomer concentration and kth is the kinetic constant of autoinitiation) for the autoinitiation rate in styrene polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6962‐6979, 2006  相似文献   

19.
Oxazolidin‐2‐ones are widely used as protective groups for 1,2‐amino alcohols and chiral derivatives are employed as chiral auxiliaries. The crystal structures of four differently substituted oxazolidinecarbohydrazides, namely N′‐[(E)‐benzylidene]‐N‐methyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C12H12N3O3, (I), N′‐[(E)‐2‐chlorobenzylidene]‐N‐methyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C12H12ClN3O3, (II), (4S)‐N′‐[(E)‐4‐chlorobenzylidene]‐N‐methyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C12H12ClN3O3, (III), and (4S)‐N′‐[(E)‐2,6‐dichlorobenzylidene]‐N,3‐dimethyl‐2‐oxo‐1,3‐oxazolidine‐4‐carbohydrazide, C13H13Cl2N3O3, (IV), show that an unexpected mild‐condition racemization from the chiral starting materials has occurred in (I) and (II). In the extended structures, the centrosymmetric phases, which each crystallize with two molecules (A and B) in the asymmetric unit, form A+B dimers linked by pairs of N—H...O hydrogen bonds, albeit with different O‐atom acceptors. One dimer is composed of one molecule with an S configuration for its stereogenic centre and the other with an R configuration, and possesses approximate local inversion symmetry. The other dimer consists of either R,R or S,S pairs and possesses approximate local twofold symmetry. In the chiral structure, N—H...O hydrogen bonds link the molecules into C(5) chains, with adjacent molecules related by a 21 screw axis. A wide variety of weak interactions, including C—H...O, C—H...Cl, C—H...π and π–π stacking interactions, occur in these structures, but there is little conformity between them.  相似文献   

20.
Crystals of the title compound, [Cu2(C10H9NO3)2(H2O)2]·2CH4N2O, consist of two (N‐salicyl­idene‐β‐alaninato‐κ3O,N,O′)copper(II) coordination units bridged by two water moieties to form a dimer residing on a crystallographic inversion center, along with two uncoordinated urea mol­ecules. The CuII atom has square‐pyramidal coordination, with three donor atoms of the tridentate Schiff base and an O atom of the bridging aqua ligand in the basal plane. The axial position is occupied by the second bridging water ligand at a distance of 2.5941 (18) Å. Hydro­gen bonds between mol­ecules of urea and the neighboring dimer units lead to the formation of a two‐dimensional grid of mol­ecules parallel to [101]. The superposition of the normals of the pyramidal base planes in the direction [100] indicates possible π–π interactions between the neighboring units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号