首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Robust computational procedures for the solution of non‐hydrostatic, free surface, irrotational and inviscid free‐surface water waves in three space dimensions can be based on iterative preconditioned defect correction (PDC) methods. Such methods can be made efficient and scalable to enable prediction of free‐surface wave transformation and accurate wave kinematics in both deep and shallow waters in large marine areas or for predicting the outcome of experiments in large numerical wave tanks. We revisit the classical governing equations are fully nonlinear and dispersive potential flow equations. We present new detailed fundamental analysis using finite‐amplitude wave solutions for iterative solvers. We demonstrate that the PDC method in combination with a high‐order discretization method enables efficient and scalable solution of the linear system of equations arising in potential flow models. Our study is particularly relevant for fast and efficient simulation of non‐breaking fully nonlinear water waves over varying bottom topography that may be limited by computational resources or requirements. To gain insight into algorithmic properties and proper choices of discretization parameters for different PDC strategies, we study systematically limits of accuracy, convergence rate, algorithmic and numerical efficiency and scalability of the most efficient known PDC methods. These strategies are of interest, because they enable generalization of geometric multigrid methods to high‐order accurate discretizations and enable significant improvement in numerical efficiency while incuring minimal storage requirements. We demonstrate robustness using such PDC methods for practical ranges of interest for coastal and maritime engineering, that is, from shallow to deep water, and report details of numerical experiments that can be used for benchmarking purposes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
An accurate three‐dimensional numerical model, applicable to strongly non‐linear waves, is proposed. The model solves fully non‐linear potential flow equations with a free surface using a higher‐order three‐dimensional boundary element method (BEM) and a mixed Eulerian–Lagrangian time updating, based on second‐order explicit Taylor series expansions with adaptive time steps. The model is applicable to non‐linear wave transformations from deep to shallow water over complex bottom topography up to overturning and breaking. Arbitrary waves can be generated in the model, and reflective or absorbing boundary conditions specified on lateral boundaries. In the BEM, boundary geometry and field variables are represented by 16‐node cubic ‘sliding’ quadrilateral elements, providing local inter‐element continuity of the first and second derivatives. Accurate and efficient numerical integrations are developed for these elements. Discretized boundary conditions at intersections (corner/edges) between the free surface or the bottom and lateral boundaries are well‐posed in all cases of mixed boundary conditions. Higher‐order tangential derivatives, required for the time updating, are calculated in a local curvilinear co‐ordinate system, using 25‐node ‘sliding’ fourth‐order quadrilateral elements. Very high accuracy is achieved in the model for mass and energy conservation. No smoothing of the solution is required, but regridding to a higher resolution can be specified at any time over selected areas of the free surface. Applications are presented for the propagation of numerically exact solitary waves. Model properties of accuracy and convergence with a refined spatio‐temporal discretization are assessed by propagating such a wave over constant depth. The shoaling of solitary waves up to overturning is then calculated over a 1:15 plane slope, and results show good agreement with a two‐dimensional solution proposed earlier. Finally, three‐dimensional overturning waves are generated over a 1:15 sloping bottom having a ridge in the middle, thus focusing wave energy. The node regridding method is used to refine the discretization around the overturning wave. Convergence of the solution with grid size is also verified for this case. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
A new accurate finite‐difference (AFD) numerical method is developed specifically for solving high‐order Boussinesq (HOB) equations. The method solves the water‐wave flow with much higher accuracy compared to the standard finite‐difference (SFD) method for the same computer resources. It is first developed for linear water waves and then for the nonlinear problem. It is presented for a horizontal bottom, but can be used for variable depth as well. The method can be developed for other equations as long as they use Padé approximation, for example extensions of the parabolic equation for acoustic wave problems. Finally, the results of the new method and the SFD method are compared with the accurate solution for nonlinear progressive waves over a horizontal bottom that is found using the stream function theory. The agreement of the AFD to the accurate solution is found to be excellent compared to the SFD solution. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a new spectral model for solving the fully nonlinear potential flow problem for water waves in a single horizontal dimension. At the heart of the numerical method is the solution to the Laplace equation which is solved using a variant of the σ ‐transform. The method discretizes the spatial part of the governing equations using the Galerkin method and the temporal part using the classical fourth‐order Runge‐Kutta method. A careful investigation of the numerical method's stability properties is carried out, and it is shown that the method is stable up to a certain threshold steepness when applied to nonlinear monochromatic waves in deep water. Above this threshold artificial damping may be employed to obtain stable solutions. The accuracy of the model is tested for: (i) highly nonlinear progressive wave trains, (ii) solitary wave reflection, and (iii) deep water wave focusing events. In all cases it is demonstrated that the model is capable of obtaining excellent results, essentially up to very near breaking.  相似文献   

5.
This paper presents a parametric finite‐difference scheme concerning the numerical solution of the one‐dimensional Boussinesq‐type set of equations, as they were introduced by Peregrine (J. Fluid Mech. 1967; 27 (4)) in the case of waves relatively long with small amplitudes in water of varying depth. The proposed method, which can be considered as a generalization of the Crank‐Nickolson method, aims to investigate alternative approaches in order to improve the accuracy of analogous methods known from bibliography. The resulting linear finite‐difference scheme, which is analysed for stability using the Fourier method, has been applied successfully to a problem used by Beji and Battjes (Coastal Eng. 1994; 23 : 1–16), giving numerical results which are in good agreement with the corresponding results given by MIKE 21 BW (User Guide. In: MIKE 21, Wave Modelling, User Guide. 2002; 271–392) developed by DHI Software. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
A further development of the QALE‐FEM (quasi‐arbitrary Lagrangian–Eulerian finite element method) based on a fully nonlinear potential theory is presented in this paper. This development enables the QALE‐FEM to deal with three‐dimensional (3D) overturning waves over complex seabeds, which have not been considered since the method was devised by the authors of this paper in their previous works (J. Comput. Phys. 2006; 212 :52–72; J. Numer. Meth. Engng 2009; 78 :713–756). In order to tackle challenges associated with 3D overturning waves, two new numerical techniques are suggested. They are the techniques for moving the mesh and for calculating the fluid velocity near overturning jets, respectively. The developed method is validated by comparing its numerical results with experimental data and results from other numerical methods available in the literature. Good agreement is achieved. The computational efficiency of this method is also investigated for this kind of wave, which shows that the QALE‐FEM can be many times faster than other methods based on the same theory. Furthermore, 3D overturning waves propagating over a non‐symmetrical seabed or multiple reefs are simulated using the method. Some of these results have not been found elsewhere to the best of our knowledge. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A new fully non‐hydrostatic model is presented by simulating three‐dimensional free surface flow on a vertical boundary‐fitted coordinate system. A projection method, known as pressure correction technique, is employed to solve the incompressible Euler equations. A new grid arrangement is proposed under a horizontal Cartesian grid framework and vertical boundary‐fitted coordinate system. The resulting model is relatively simple. Moreover, the discretized Poisson equation for pressure correction is symmetric and positive definite, and thus it can be solved effectively by the preconditioned conjugate gradient method. Several test cases of surface wave motion are used to demonstrate the capabilities and numerical stability of the model. Comparisons between numerical results and analytical or experimental data are presented. It is shown that the proposed model could accurately and effectively resolve the motion of short waves with only two layers, where wave shoaling, nonlinearity, dispersion, refraction, and diffraction phenomena occur. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The hydrostatic pressure assumption has been widely used in studying water movements in rivers, lakes, estuaries, and oceans. While this assumption is valid in many cases and has been successfully used in numerous studies, there are many cases where this assumption is questionable. This paper presents a three‐dimensional, hydrodynamic model for free‐surface flows without using the hydrostatic pressure assumption. The model includes two predictor–corrector steps. In the first predictor–corrector step, the model uses hydrostatic pressure at the previous time step as an initial estimate of the total pressure field at the new time step. Based on the estimated pressure field, an intermediate velocity field is calculated, which is then corrected by adding the non‐hydrostatic component of the pressure to the estimated pressure field. A Poisson equation for non‐hydrostatic pressure is solved before the second intermediate velocity field is calculated. The final velocity field is found after the free surface at the new time step is computed by solving a free‐surface correction equation. The numerical method was validated with several analytical solutions and laboratory experiments. Model results agree reasonably well with analytical solutions and laboratory results. Model simulations suggest that the numerical method presented is suitable for fully hydrodynamic simulations of three‐dimensional, free‐surface flows. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
A methodology for computing three‐dimensional interaction between waves and fixed bodies is developed based on a fully non‐linear potential flow theory. The associated boundary value problem is solved using a finite element method (FEM). A recovery technique has been implemented to improve the FEM solution. The velocity is calculated by a numerical differentiation technique. The corresponding algebraic equations are solved by the conjugate gradient method with a symmetric successive overrelaxation (SSOR) preconditioner. The radiation condition at a truncated boundary is imposed based on the combination of a damping zone and the Sommerfeld condition. This paper (Part 1) focuses on the technical procedure, while Part 2 [Finite element simulation of fully non‐linear interaction between vertical cylinders and steep waves. Part 2. Numerical results and validation. International Journal for Numerical Methods in Fluids 2001] gives detailed numerical results, including validation, for the cases of steep waves interacting with one or two vertical cylinders. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a comparison in terms of accuracy and efficiency between two fully nonlinear potential flow solvers for the solution of gravity wave propagation. One model is based on the high‐order spectral (HOS) method, whereas the second model is the high‐order finite difference model OceanWave3D. Although both models solve the nonlinear potential flow problem, they make use of two different approaches. The HOS model uses a modal expansion in the vertical direction to collapse the numerical solution to the two‐dimensional horizontal plane. On the other hand, the finite difference model simply directly solves the three‐dimensional problem. Both models have been well validated on standard test cases and shown to exhibit attractive convergence properties and an optimal scaling of the computational effort with increasing problem size. These two models are compared for solution of a typical problem: propagation of highly nonlinear periodic waves on a finite constant‐depth domain. The HOS model is found to be more efficient than OceanWave3D with a difference dependent on the level of accuracy needed as well as the wave steepness. Also, the higher the order of the finite difference schemes used in OceanWave3D, the closer the results come to the HOS model. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper a layer‐structured finite volume model for non‐hydrostatic 3D environmental free surface flow is presented and applied to several test cases, which involve the computation of gravity waves. The 3D unsteady momentum and mass conservation equations are solved in a collocated grid made of polyhedrons, which are built from a 2D horizontal unstructured mesh, by just adding several horizontal layers. The mesh built in such a way is unstructured in the horizontal plane, but structured in the vertical direction. This procedure simplifies the mesh generation and at the same time it produces a well‐oriented mesh for stratified flows, which are common in environmental problems. The model reduces to a 2D depth‐averaged shallow water model when one single layer is defined in the mesh. Pressure–velocity coupling is achieved by the Semi‐Implicit Method for Pressure‐Linked Equations algorithm, using Rhie–Chow interpolation to stabilize the pressure field. An attractive property of the model proposed is the ability to compute the propagation of short waves with a rather coarse vertical discretization. Several test cases are solved in order to show the capabilities and numerical stability of the model, including a rectangular free oscillating basin, a radially symmetric wave, short wave propagation over a 1D bar, solitary wave runup on a vertical wall, and short wave refraction over a 2D shoal. In all the cases the numerical results are compared either with analytical or with experimental data. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The purpose of the present study is to establish a numerical model appropriate for solving inviscid/viscous free‐surface flows related to nonlinear water wave propagation. The viscous model presented herein is based on the Navier–Stokes equations, and the free‐surface is calculated through an arbitrary Lagrangian–Eulerian streamfunction‐vorticity formulation. The streamfunction field is governed by the Poisson equation, and the vorticity is obtained on the basis of the vorticity transport equation. For computing the inviscid flow the Laplace streamfunction equation is used. These equations together with the respective (appropriate) fully nonlinear free‐surface boundary conditions are solved using a finite difference method. To demonstrate the model feasibility, in the present study we first simulate collision processes of two solitary waves of different amplitudes, and compute the phenomenon of overtaking of such solitary waves. The developed model is subsequently applied to calculate (both inviscid and the viscous) flow field, as induced by passing of a solitary wave over submerged rectangular structures and rigid ripple beds. Our study provides a reasonably good understanding of the behavior of (inviscid/viscous) free‐surface flows, within the framework of streamfunction‐vorticity formulation. The successful simulation of the above‐mentioned test cases seems to suggest that the arbitrary Lagrangian–Eulerian/streamfunction‐vorticity formulation is a potentially powerful approach, capable of effectively solving the fully nonlinear inviscid/viscous free‐surface flow interactions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The objective of this research is to develop a model that will adequately simulate the dynamics of tsunami propagating across the continental shelf. In practical terms, a large spatial domain with high resolution is required so that source areas and runup areas are adequately resolved. Hence efficiency of the model is a major issue. The three‐dimensional Reynolds averaged Navier–Stokes equations are depth‐averaged to yield a set of equations that are similar to the shallow water equations but retain the non‐hydrostatic pressure terms. This approach differs from the development of the Boussinesq equations where pressure is eliminated in favour of high‐order velocity and geometry terms. The model gives good results for several test problems including an oscillating basin, propagation of a solitary wave, and a wave transformation over a bar. The hydrostatic and non‐hydrostatic versions of the model are compared for a large‐scale problem where a fault rupture generates a tsunami on the New Zealand continental shelf. The model efficiency is also very good and execution times are about a factor of 1.8 to 5 slower than the standard shallow water model, depending on problem size. Moreover, there are at least two methods to increase model accuracy when warranted: choosing a more optimal vertical interpolation function, and dividing the problem into layers. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
This work is concerned with the numerical simulation of two‐dimensional viscoelastic free surface flows of a second‐order fluid. The governing equations are solved by a finite difference technique based on the marker‐and‐cell philosophy. A staggered grid is employed and marker particles are used to represent the fluid free surface. Full details for the approximation of the free surface stress conditions are given. The resultant code is validated and convergence is demonstrated. Numerical simulations of the extrudate swell and flow through a planar 4:1 contraction for various values of the Deborah number are presented. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
16.
In this paper, we present a computationally efficient semi‐implicit scheme for the simulation of three‐dimensional hydrostatic free surface flow problems on staggered unstructured Voronoi meshes. For each polygonal control volume, the pressure is defined in the cell center, whereas the discrete velocity field is given by the normal velocity component at the cell faces. A piecewise high‐order polynomial vector velocity field is then reconstructed from the scalar normal velocities at the cell faces by using a new high‐order constrained least‐squares reconstruction operator. The reconstructed high‐order piecewise polynomial velocity field is used for trajectory integration in a semi‐Lagrangian approach to discretize the nonlinear convective terms in the governing PDE. For that purpose, a high‐order Taylor method is used as ODE integrator. The resulting semi‐implicit algorithm is extensively validated on a large set of different academic test problems with exact analytical solution and is finally applied to a real‐world engineering problem consisting of a curved channel upstream of two micro‐turbines of a hydroelectric power plant. For this realistic case, some experimental reference data are available from field measurements. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
18.
19.
In this paper, a semi‐implicit numerical model for one‐dimensional urban drainage networks is formulated in such a fashion as to intrinsically account for arbitrary cross sections, for the occurrence of dry areas, for free surface, and for pressurized flows. The governing differential equations are discretized with a consistent mass conservative scheme that naturally applies to all flow regimes. The resulting mildly nonlinear system, at every time step, is efficiently solved with a converging, properly devised, nested Newton‐type algorithm. It will be shown that with the proposed semi‐implicit model, high accuracy can be achieved at a moderate computational cost. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A new modified Galerkin/finite element method is proposed for the numerical solution of the fully nonlinear shallow water wave equations. The new numerical method allows the use of low‐order Lagrange finite element spaces, despite the fact that the system contains third order spatial partial derivatives for the depth averaged velocity of the fluid. After studying the efficacy and the conservation properties of the new numerical method, we proceed with the validation of the new numerical model and boundary conditions by comparing the numerical solutions with laboratory experiments and with available theoretical asymptotic results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号