首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liquid-phase reduction NO 3 using monometallic and bimetallic catalysts (5% Rh/Al2O3, 5% Rh-0.5% Cu/Al2O3, 5% Rh-1.5% Cu/Al2O3, 5% Rh-5% Cu/Al2O3 and a physical mixture of 5% Rh/Al2O3 and 1.5% Cu/Al2O3) was studied in a slurry reactor operating at atmospheric pressure. Kinetic measurements were performed for a low concentration of nitrate (0.4 × 10−3−3.2 × 10−3 mol dm−3) and the temperature range 293–313 K. From the experimental data, it was found that the reduction of nitrate is first order with respect to nitrate. On the basis of the rate constants, the apparent activation energy was established using a graphic method. Published in Russian in Kinetika i Kataliz, 2007, Vol. 48, No. 6, pp. 881–886. This article was submitted by the authors in English.  相似文献   

2.
The effect of Nb as a support modifier on the NiMo6/Al2O3–Nb2O5(x) (x?=?0, 1, 4, and 8?wt% Nb) catalysts was studied. The supports were prepared by one-pot coprecipitation from soluble precursors. The XRF analysis of the catalysts showed that the contents of Mo and Ni increased slightly with the presence of Nb. Micropore area and pore volume augmented importantly with Nb content, resulting in pore diameters between 5.3 and 9.3?nm. XPS analysis showed that the presence of Nb decreases the active metal–support interaction, improving the Mo and Ni sulfidation degree. The Raman spectra of sulfided catalysts suggested an increase in the number of layers of MoS2 in the presence of Nb. Generally, the thiophene HDS activity at normal pressure of sulfided NiMo6/Al2O3–Nb2O5(8) was greater than that of the sulfided catalysts with x?=?0, 1, and 4?wt% Nb, which can be attributed to the Nb promotion that would have an effect on the type of active site (Brønsted or Lewis acidic sites), since the number of sites by CO chemisorption for sulfided NiMo6/Al2O3–Nb2O5(x) did not show correlation with the catalytic activity. The high-pressure HDS activity of dibenzothiophene was also greater in the presence of Nb, and the hydrogenation route was preferred for the Nb-promoted solid, while the unpromoted one showed a larger yield of direct desulfurization products.  相似文献   

3.
The A1, O, AlO, A12O, Al2O2, WO2, and WO3, partial pressures in the vapor over Al2O3 in a tungsten Knudsen effusion cell between 2300 and 2600 K were derived from A1+, O+, AlO+, A12O+, Al2O2+, WO2+, and WO3+, ion intensities. The mass spectrometer was calibrated against the equilibrium constant of the WO3(g) = WO2(g) + O(g) reaction. Refined values of the ionization cross sections of AlO and A12O2 were used in the partial pressure calculations. The enthalpies of atomization of aluminum suboxides were determined to be Δat H o(AlO, g, 0) = 510.7 ± 3.3 kJ mol−1, Δat H o(Al2O, g, 0) = 1067.2 ± 6.9 kJ mol−1, and Δat H o(Al2O2, g, 0) = 1556.7 ± 9.9 kJ mol−1.  相似文献   

4.
Со-Мо/Al2O3 and Ni-W/Al2O3 catalysts were tested in hydrotreating of light cycle oil from catalytic cracking, of the straight-run gasoil, and of their mixture under typical hydrotreating conditions used in industry. The catalysts prepared using PMo12 and PW12 heteropoly acids exhibit high catalytic activity. The Со-Мо/Al2O3 catalyst is more active in hydrodesulfurization and hydrogenation of olefin and diene hydrocarbons, whereas the Ni-W/Al2O3 catalysts are more active in hydrogenation of mono- and polycyclic aromatic hydrocarbons. Comparison of the quality characteristics of the hydrogenizates obtained with the requirements of the technical regulations shows that the required levels of the sulfur content and cetane number of the hydrogenizates at practically accessible process parameters can be reached for mixtures of the straight-run gasoil and light cycle oil from catalytic cracking with high content of the latter component only when the process with the Со-Мо/Al2O3 system and Ni-W/Al2O3 catalysts is performed in two steps.  相似文献   

5.
6.
The catalysts based on MoO3/Al2O3 were synthesized and tested using aqueous hydrogen peroxide as the oxidant in the oxidative desulfurization of thiophene, benzothiophene (BT) and dibenzothiophene (DBT) into the corresponding sulfones. Among catalysts tested, 15%(MoO3–WO3)/Al2O3 prepared by a conventional impregnation method was considerably active for the oxidation of thiophene, BT and DBT, which could achieve higher than 99.2% conversions at lower reaction temperature (≤338 K). The use of hexadecyltrimethyl ammonium bromide as the phase-transfer reagent in small amounts could promote the reaction efficiently.  相似文献   

7.
Highly monodispersed ruthenium nanoparticles were prepared via wet impregnation technique using RuCl3 · nH2O as a precursor. Ru nanoparticles were supported on Al2O3 to synthesize Ru nanocatalyst. The nanocatalyst was characterized by various techniques like XRD, SEM, TEM and BET analysis. The catalyst was used for hydrogenation of phenol under mild condition. The activity of the catalyst was checked by varying different parameters such as reaction temperature, time, H2 partial pressure, metal loading and catalyst amount. The catalyst was recovered from product and reused up to four times without significant loss in its catalytic activity. After a reaction time of 1 h, Ru/Al2O3 nanocatalyst showed high reactivity (82% conversion) and selectivity to cyclohexanone (67%) at 80°C and 20 bar hydrogen pressure.  相似文献   

8.
9.
Higher alcohol has been considered as a potential fuel additive. Higher alcohol, including C2–C4 alcohol was synthesized by catalytic conversion of syngas (with a ratio of CO/H2?=?1) derived from natural gas over modified Cu/ZnO/Al2O3 catalyst. Modified Cu/ZnO/Al2O3 catalysts promoted by alkali metal (Li) for higher alcohol synthesis (HAS) were prepared at different pH (6, 6.5, 7, 8, and 9) by co-precipitation to control Cu surface area and characterized by N2 physisorption, XRD, SEM, H2-TPR and TPD. The HAS reaction was carried out under a pressure of 45 bar, GHSV of 4000 h?1, ratio of H2/CO?=?1, and temperature ranges of 240 and 280 °C. It was found that the malachite phase of copper causes the size of copper to be small, which is suitable for methanol synthesis. Methanol and HAS share a common catalytic active site and intermediate. It was also found that the productivity to higher alcohol was correlated with Cu surface area.  相似文献   

10.
Gold catalysts with loadings ranging from 0.5 to 7.0 wt% on a ZnO/Al2O3 support were prepared by the deposition–precipitation method (Au/ZnO/Al2O3) with ammonium bicarbonate as the precipitation agent and were evaluated for performance in CO oxidation. These catalysts were characterized by inductively coupled plasma-atom emission spectrometry, temperature programmed reduction, and scanning transmission electron microscopy. The catalytic activity for CO oxidation was measured using a flow reactor under atmospheric pressure. Catalytic activity was found to be strongly dependent on the reduction property of oxygen adsorbed on the gold surface, which related to gold particle size. Higher catalytic activity was found when the gold particles had an average diameter of 3–5 nm; in this range, gold catalysts were more active than the Pt/ZnO/Al2O3 catalyst in CO oxidation. Au/ZnO/Al2O3 catalyst with small amount of ZnO is more active than Au/Al2O3 catalyst due to higher dispersion of gold particles.  相似文献   

11.
Effect of various chelating components, multibasic carboxylic acids and glycols, used to prepare hydrotreating catalysts on the activity regeneration of calcined hydrotreating catalysts was studied. Reactivated catalyst samples were tested in a model reaction of hydrodesulfurization of dibenzothiophene. It was shown that the treatment of calcined catalysts with the chelating components leads to an increase in the catalytic activity. The best catalytic characteristics are observed for the catalyst reactivated with a solution containing citric acid and triethylene glycol.  相似文献   

12.
The electrosurface properties of aluminum oxide particles prepared by shock—wave loading of aluminum powder in an oxygen-containing atmosphere and the aggregation stability of its aqueous dispersions are studied by the macroelectrophoresis method, potentiometric titration, and photometry. The enhanced stability of the dispersions in acid media and in the vicinity of the isoelectric point compared to that in alkaline media is explained by the effect of the structural component of the disjoining pressure, which appears due to the predominant hydration of the cationic forms of aluminum that are present on the surface of dispersed phase particles.Translated from Kolloidnyi Zhurnal, Vol. 67, No. 1, 2005, pp. 128–131. Original Russian Text Copyright © 2005 by Chiganova, Nafikova.  相似文献   

13.
Macro-/mesoporous Al2O3 supports were prepared by using monodisperse polystyrene (PS) microspheres as a template. The pore volume and BET surface area of the Al2O3 supports increased considerably with increasing amounts of the PS microspheres; further investigation showed that PS template only increased the volume of macro-pores but did not change the volume of meso-pores or micro-pores. Macro-/mesoporous Re2O7/Al2O3 metathesis catalysts were prepared through loading Re2O7 onto the as-prepared macro-/mesoporous Al2O3 supports, and their catalytic performance was tested in a fixed-bed tubular reactor using the metathesis of normal butylenes as a probe reaction. The results showed that the prepared macro-/mesoporous Re2O7/Al2O3 catalyst had high activity with consistent selectivity; propylene and pentene accounted for more than 90 wt% of the metathesis products, while the amount of ethylene plus hexane was less than 10 wt%, the majority of which was hexane. These Re2O7/Al2O3 catalysts had not only higher activity, but also longer working life span and higher tolerance to carbon residues than conventional Re2O7/Al2O3 catalysts.  相似文献   

14.
The phase composition has been studied and an equilibrium phase diagram has been designed for the Al2O3-Li2O-R2O5 (R = Ta or Nb) systems in the subsolidus region up to 1000°C and 85 mol % Li2O. New phases with the composition Li1+x Al1?x O2?x , where x = 0–0.67, have been found.  相似文献   

15.
Thick aluminum oxide films are prepared on Al plates by anodizing. On the ceramic surface thus obtained a very thin Ag film is deposited via vacuum thermal evaporation. The Ag/Al2O3/Al samples prepared are irradiated by Nd:YAG laser through a suitable metal mask in order to remove the top metal film in the exposed areas. Thus, a negative silver image of the copied mask is obtained. Further, the samples are processed in Ni electroless chemical bath activated by the rest of silver. All processing steps are studied by scanning electron microscopy (SEM). EDS X-ray mapping is applied to study the final distribution of Al and Ni in the processed areas. In addition, the DC conductivity of the fabricated Ni wires obtained is measured. The proposed new method for selective chemical deposition of electroconductive Ni onto laser microstructured Ag/Al2O3/Al samples is simple, versatile and not restricted to the metal/ceramic system studied as well as to the electroless deposited metal.  相似文献   

16.
Summary Reactive milling of Cu-hydroxycarbonate - powder aluminium mixture brings many complex chemical reactions such as decomposition, aluminothermic reduction and mechanical alloying resulting in the formation of nanometer size composites that contain intermetallic phases, -Cu9Al4 and -CuAl2, with aluminium oxide.  相似文献   

17.
The adsorption of carboxymethylcellulose (CMC) in the presence or absence of the surfactants: anionic SDS, nonionic Triton X-100 and their mixture SDS/TX-100 from the electrolyte solutions (NaCl, CaCl2) on the alumina surface (Al2O3) was studied. In each measured system the increase of CMC adsorption in the presence of surfactants was observed. This increase was the smallest in the presence of SDS, a bit larger in the presence of Triton X-100 and the largest when the mixture of SDS/Triton X-100 was used. These results are a consequence of formation of complexes between the CMC and the surfactant particles. Moreover, the dependence between the amount of surfactants’ adsorption and the CMC initial concentration was measured. It comes out that the surfactants’ adsorption amount is not dependent on the CMC initial concentration and moreover, it is unchanged in the whole measured concentration range. The influence of kind of electrolyte, its ionic strength as well as pH of a solution on the amount of the CMC adsorption at alumina surface was also measured. The amount of CMC adsorption is larger in the presence of NaCl than in the presence of CaCl2 as the background electrolyte. It is a result of the complexation reaction between Ca2+ ions and the functional groups of CMC belonging to the same macromolecule. As far as the electrolyte ionic strength is concerned the increase of CMC adsorption amount accompanying the increase of electrolyte ionic strength is observed. The reason for that is the ability of electrolyte cations to screen every electrostatic repulsion in the adsorption system. Another observation is that the increase of pH caused the decrease of CMC adsorption. The explanation of this phenomenon is connected with the influence of pH on both dissociation degree of polyelectrolyte and kind and concentration of surface active groups of the adsorbent.  相似文献   

18.
19.
Al2O3-Cr2O3 solid solutions with 0, 4, 7, 10 and 20 mol% of corundum were synthesized using a high-pressure/high-temperature apparatus and characterized by X-ray powder diffraction. Calorimetric measurements were carried out using DSC-111 (Setaram). Heat capacity was measured by the enthalpy method in a temperature range of 260–340 K, near magnetic phase transition in pure Cr2O3 (305 K). Magnetic contribution into the heat capacity was derived and found to change irregularly with the composition.  相似文献   

20.
It was studied the influence of gold addition on physico-chemical properties and catalytic activity of bimetallic Ni-Au/Al2O3 catalyst in partial oxidation of methane (POM). The reduction behavior in hydrogen, XRD crystal structure, XPS spectra and POM catalytic activity were investigated. The reduction of Ni-Au catalyst is a prerequisite condition to catalyze POM reaction. The formation of Ni-Au alloy during high temperature reduction in hydrogen and also in the conditions of POM reaction was experimentally proved. The addition of gold to Ni/Al2O3 system improves catalyst stability and activity in POM reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号