首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first example of a transition‐metal‐catalyzed, meta‐selective C H bromination procedure is reported. In the presence of catalytic [{Ru(p‐cymene)Cl2}2], tetrabutylammonium tribromide can be used to functionalize the meta C H bond of 2‐phenylpyridine derivatives, thus affording difficult to access products which are highly predisposed to further derivatization. We demonstrate this utility with one‐pot bromination/arylation and bromination/alkenylation procedures to deliver meta‐arylated and meta‐alkenylated products, respectively, in a single step.  相似文献   

2.
α‐Arylated carbonyl compounds are commonly occurring motifs in biologically interesting molecules and are therefore of high interest to the pharmaceutical industry. Conventional procedures for their synthesis often result in complications in scale‐up, such as the use of stoichiometric amounts of toxic reagents and harsh reaction conditions. Over the last decade, significant efforts have been directed towards the development of metal‐catalyzed α‐arylations of carbonyl compounds as an alternative synthetic approach that operates under milder conditions. This Review summarizes the developments in this area to date, with a focus on how the substrate scope has been expanded through selection of the most appropriate synthetic method, such as the careful choice of ligands, precatalysts, bases, and reaction conditions.  相似文献   

3.
Bridging the gap : Snapshots of 1,6‐H‐shift precursors indicate that a narrower C? H???C+ separation (D in the ORTEP diagram) in the title complexes induces faster degenerate rearrangement of 1 +. A contact distance of less than 2.7 Å is necessary to realize the organic three‐center two‐electron bond of [C? H? C]+, as indicated by extrapolation of the X‐ray data.

  相似文献   


4.
5.
Catalytic insertion or addition of a metal‐imido/nitrene species, generated from reaction of a transition‐metal catalyst with iminoiodanes, to C? H and C?C bonds offers a convenient and atom economical method for the synthesis of nitrogen‐containing compounds. Following this groundbreaking discovery during the second half of the last century, the field has received an immense amount of attention with a myriad of impressive metal‐mediated methods for the synthesis of amines and aziridines having been developed. This review will cover the significant progress made in improving the efficiency, versatility and stereocontrol of this important reaction. This will include the various iminoiodanes, their in situ formation, and metal catalysts that could be employed and new ligands, both chiral and non‐chiral, which have been designed, as well as the application of this functional group transformation to natural product synthesis and the preparation of bioactive compounds of current therapeutic interest. DOI 10.1002/tcr.201100018  相似文献   

6.
7.
Intermolecular hydroarylation reactions of highly strained methylenecyclopropanes 2‐phenylmethylenecyclopropane ( 1 ), 2,2‐diphenylmethylenecyclopropane ( 2 ), methylenespiropentane ( 3 ), bicyclopropylidene ( 4 ), (dicyclopropylmethylene)cyclopropane ( 5 ), and benzhydrylidenecyclopropane ( 6 ) through C? H bond functionalization of 2‐phenylpyridine ( 7 a ) and other arenes with directing groups were studied. The reaction was very sensitive to the substitution on the methylenecyclopropanes. Although these transformations involved (cyclopropylcarbinyl)–metal intermediates, substrates 1 and 4 furnished anti‐Markovnikov hydroarylation products with complete conservation of all cyclopropane rings in 11–93 % yield, whereas starting materials 3 and 5 were inert toward hydroarylation. Methylenecyclopropane 6 formed the products of formal hydroarylation reactions of the longest distal C? C bond in the methylenecyclopropane moiety in high yield, and hydrocarbon 2 afforded mixtures of hydroarylated products in low yields with a predominance of compounds that retained the cyclopropane unit. As byproducts, Diels–Alder cycloadducts and self‐reorganization products were obtained in several cases from substrates 1 – 3 and 5 . The structures of the most important new products have been unambiguously determined by X‐ray diffraction analyses. On the basis of the results of hydroarylation experiments with isotopically labeled 7 a ‐[D5], a plausible mechanistic rationale and a catalytic cycle for these unusual ruthenium‐catalyzed hydroarylation reactions have been proposed. Arene‐tethered ruthenium–phosphane complex 53 , either isolated from the reaction mixture or independently prepared, did not show any catalytic activity.  相似文献   

8.
Without the need for organohalide precursors , the convenient and general synthesis of aryl (or diaryl) sulfides can be achieved by using aryl carboxylic acids and thiols or disulfides for decarboxylative C? S cross‐coupling catalyzed by a bimetallic system (see scheme).

  相似文献   


9.
10.
A coordinatively unsaturated iron‐methyl complex having an N‐heterocyclic carbene ligand, [Cp*Fe(LMe)Me] ( 1 ; Cp*=η5‐C5Me5, LMe=1,3,4,5‐tetramethyl‐imidazol‐2‐ylidene), is synthesized from the reaction of [Cp*Fe(TMEDA)Cl] (TMEDA=N,N,N′,N′‐tetramethylethylenediamine) with methyllithium and LMe. Complex 1 is found to activate the C? H bonds of furan, thiophene, and benzene, giving rise to aryl complexes, [Cp*Fe(LMe)(aryl)] (aryl=2‐furyl ( 2 ), 2‐thienyl ( 3 ), phenyl ( 4 )). The C? H bond cleavage reactions are applied to the dehydrogenative coupling of furans or thiophenes with pinacolborane (HBpin) in the presence of tert‐butylethylene and a catalytic amount of 1 (10 mol % to HBpin). The borylation of the furan/thiophene or 2‐substituted furans/thiophenes occurs exclusively at the 2‐ or 5‐positions, respectively, whereas that of 3‐substituted furans/thiophenes takes place mainly at the 5‐position and gives a mixture of regioisomers. Treatment of 2 with 2 equiv of HBpin results in the quantitative formation of 2‐boryl‐furan and the borohydride complex [Cp*Fe(LMe)(H2Bpin)] ( 5 ). Heating a solution of 5 in the presence of tert‐butylethylene led to the formation of an alkyl complex [Cp*Fe(LMe)CH2CH2tBu] ( 6 ), which was found to cleave the C? H bond of furan to produce 2 . On the basis of these results, a possible catalytic cycle is proposed.  相似文献   

11.
Ring leader : PtCl2 catalyzes intramolecular cyclization of o‐isopropyl or o‐benzyl aryl alkynes to give substituted indene derivatives with good yields and high selectivity. This reaction appears to proceed through an sp3 C? H activation and 1,4‐hydrogen migration pathway (see scheme).

  相似文献   


12.
13.
A palladium‐catalyzed direct arylation of isoxazoles with aryl iodides has been achieved. The C H bond at the 5‐position is activated selectively to give coupling products in moderate to good yields. This direct arylation was applied to the synthesis of a spiro‐type chiral ligand, which proved to be most effective to the palladium‐catalyzed tandem cyclization of a dialkenyl alcohol.  相似文献   

14.
15.
16.
17.
The electronically unsaturated dirhenium complex [Re2(CO)8(µ‐AuPPh3)(µ‐Ph)] ( 1 ) was obtained from the reaction of [Re2(CO)8{µ‐η2‐C(H)C(H)nBu}(µ‐H)] with [Au(PPh3)Ph]. The bridging {AuPPh3} group was replaced by a bridging hydrido ligand to yield the unsaturated dirhenium complex [Re2(CO)8(µ‐H)(µ‐Ph)] ( 2 ) by reaction of 1 with HSnPh3. Compound 2 reductively eliminates benzene upon addition of NCMe at 25 °C. The electronic structure of 2 and the mechanism of the reductive elimination of the benzene molecule in its reaction with NCMe were investigated by DFT computational analyses.  相似文献   

18.
19.
A grand opening : N‐Boc‐N‐alkylsulfamides are effective substrates for the title transformation. Oxidative cyclization is highly chemoselective as well as being both stereospecific and diastereoselective. With the advent of new protocols that facilitate ring opening of the six‐membered‐ring heterocyclic products, access to differentially protected 1,3‐diamines has been made possible (see scheme).

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号