首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
2‐X‐1,3,2‐diazaarsolenes and 2‐X‐1,3,2‐ stibolenes (X = Cl, Br) were prepared from appropriate α‐amino‐aldimine precursors via transamination with ClSb(NMe2)2 or via base‐induced dehydrohalogenation with EX3 (E = As, Sb). The products were further converted into 2‐iodo‐derivatives via halide exchange with Me3SiI, or into 1,3,2‐diazaarsolenium or 1,3,2‐stibolenium salts via halide abstraction using E′X3 (E′ = Al, Ga, Sb) or Me3SiOTf. All compounds synthesized were characterized by spectroscopic data and several of them by single‐crystal X‐ray diffraction studies. The results of these investigations confirmed that diazaarsolenium or stibolenium cations are stabilized by similar π‐delocalization effects as the corresponding diazaphospholenium cations. 2‐Halogeno‐1,3,2‐diazaarsolenes and 2‐halogeno‐132‐stibolenes are best addressed as molecular species whose covalent E X bonds are as in 2‐chloro‐diazaphospholenes weakened by intramolecular π(C2N2) → σ*(E X) and, in the case of the Sb‐containing heterocycles, inter‐ molecular n(X′) → σ*(E X) hyperconjugation between the σ* (E X) orbital and a lone‐pair of electrons on the halogen atom of a neighboring molecule. Correlation of structural and spectroscopic data and the evaluation of halide transfer reactions allowed to conclude that the extent of E X bond weakening in the 2‐X‐substituted heterocycles decreases and thus the Lewis acidity of the cations increases, with increasing atomic number of the pnicogen atom. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:327–338, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20098  相似文献   

3.
Summary: Investigations regarding the cationic ring‐opening polymerization of 2‐phenyl‐2‐oxazoline under microwave irradiation and conventional heating are reported. This study was inspired by contradictory reports of the (non‐)existence of non‐thermal microwave effects that might accelerate the cationic ring‐opening of 2‐oxazolines. The polymerization of 2‐phenyl‐2‐oxazoline was investigated under pressure in acetonitrile and under reflux (or at the boiling point of butyronitrile in a closed vessel) in butyronitrile utilizing a single‐mode microwave reactor and automated synthesis robots with conventional heating.

  相似文献   


4.
5.
6.
7.
8.
The energies of the kinetically inert, electronically saturated Lukehart-type metalla-beta-diketone [Re{(COMe)2H}(CO)4] (9 a) and of the kinetically labile, electronically unsaturated platina-beta-diketones [Pt{(COMe)2H}Cl2]- (10 a), [Pt2{(COMe)2H}2(micro-Cl)2] (11 a), and [Pt{(COMe)2H}(bpy)]+ (12 a) have been calculated by DFT at the B3LYP/6-311++G(d,p) level using effective core potentials with consideration of relativistic effects for the transition metals. Analogously, energies of the requisite open (non-hydrogen-bonded) equilibrium conformers (9 b, 10 c, 11 b, 12 b) and energies which were obtained from the hydrogen-bonded conformers by rigid rotation of the OH group around the C--O bond by 180 degrees followed by relaxation of all bond lengths and angles (9 c, 10 d, 11 c, 12 d) have been calculated. These energies were found to be higher by 14.7/27.2 (9 b/9 c), 20.7/27.2 (10 c/10 d), 19.2/25.7 (11 b/11 c), and 9.4/19.6 kcal mol(-1) (12 b/12 d) than those of the intramolecularly O--HO hydrogen-bonded metalla-beta-diketones 9 a, 10 a, 11 a, and 12 a, respectively. In acetylacetone (Hacac), the generic organic analogue of metalla-beta-diketones, the energies of the most stable non-hydrogen-bonded enol isomer (6 b) and of the conformer derived from the H-bonded form by rigid rotation of the OH group by 180 degrees followed by subsequent relaxation of all bond lengths and angles (6 k) were found to be 10.9/16.1 kcal mol(-1) (6 b/6 k) higher compared to the intramolecularly O--HO bonded isomer 6 a. Thus, the hydrogen bonds in metalla-beta- diketones must be regarded as strong and were found to be up to twice as strong as that in acetylacetone. A linear relationship was found between the hydrogen-bond energies based on the rigidly rotated structures and the OO separation in the hydrogen-bonded structures. Furthermore, these energies were also found to be correlated with the electron densities at the OH bond critical points (rhobcp) in the O--HO bonds of metalla-beta-diketones 9 a, 10 a, 11 a, and 12 a (calculated using the AIM theory). The comparison of the energies of the doubly intermolecularly hydrogen-bonded dinuclear platina-beta-diketone [{Pt{(COMe)2H}(bpy)}2]2+ (14) with that of the mononuclear intramolecularly hydrogen-bonded cation [Pt{(COMe)2H}(bpy)]+ (12 a) showed that the intermolecular hydrogen bonds in 14 are weaker than the intramolecular hydrogen bond in 12.  相似文献   

9.
10.
Rh2(OAc)4‐Catalyzed decomposition of diazo esters in the presence of perfluoroalkyl‐ or perfluoroaryl‐substituted silyl enol ethers smoothly provided the corresponding alkyl 2‐siloxycyclopropanecarboxylates in very good yields. The generated donor? acceptor cyclopropanes are equivalents of γ‐oxo esters, which we demonstrated by their one‐pot transformations to yield fluorine‐containing heterocycles. A reductive procedure selectively afforded perfluoroalkyl‐substituted γ‐hydroxy esters or γ‐lactones. The treatment of the donor? acceptor cyclopropanes with hydrazine or phenylhydrazine afforded a series of perfluoroalkyl‐ and perfluoroaryl‐substituted 4,5‐dihydropyridazin‐3(2H)‐ones.  相似文献   

11.
The hydrolysis of PEtOx is studied to evaluate the potential toxicity of partially hydrolyzed polymers that might interfere with its increasing popularity for biomedical applications. The hydrolysis of PEtOx is studied in the presence of digestive enzymes (gastric and intestinal) and at 5.8 M hydrochloric acid as a function of temperature (57, 73, 90, and 100 °C). It is found that PEtOx undergoes negligible hydrolysis at 37 °C and that thermal and solution properties are not altered when up to 10% of the polymer backbone is hydrolyzed. Mucosal irritation and cytotoxicity is also absent up to 10% hydrolysis levels. In conclusion, PEtOx will not decompose at physiological conditions, and partial hydrolysis will not limit its biomedical applications.

  相似文献   


12.
Recently described and fully characterized trinuclear rhodium‐hydride complexes [{Rh(PP*)H}32‐H)33‐H)][anion]2 have been investigated with respect to their formation and role under the conditions of asymmetric hydrogenation. Catalyst–substrate complexes with mac (methyl (Z)‐ N‐acetylaminocinnamate) ([Rh(tBu‐BisP*)(mac)]BF4, [Rh(Tangphos)(mac)]BF4, [Rh(Me‐BPE)(mac)]BF4, [Rh(DCPE)(mac)]BF4, [Rh(DCPB)(mac)]BF4), as well as rhodium‐hydride species, both mono‐([Rh(Tangphos)‐ H2(MeOH)2]BF4, [Rh(Me‐BPE)H2(MeOH)2]BF4), and dinuclear ([{Rh(DCPE)H}22‐H)3]BF4, [{Rh(DCPB)H}22‐H)3]BF4), are described. A plausible reaction sequence for the formation of the trinuclear rhodium‐hydride complexes is discussed. Evidence is provided that the presence of multinuclear rhodium‐hydride complexes should be taken into account when discussing the mechanism of rhodium‐promoted asymmetric hydrogenation.  相似文献   

13.
β‐ or α,β‐Substituted vinylpyridines react with 3,3‐dimethylbut‐1‐ene in the presence of Wilkinson catalyst [RhCl(PPh3)3] to give the corresponding alkylated products along with unusually isomerized products. © 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:346–350, 2002; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/hc.10045  相似文献   

14.
Reaction conditions for the C? C cross‐coupling of O6‐alkyl‐2‐bromo‐ and 2‐chloroinosine derivatives with aryl‐, hetaryl‐, and alkylboronic acids were studied. Optimization experiments with silyl‐protected 2‐bromo‐O6‐methylinosine led to the identification of [PdCl2(dcpf)]/K3PO4 in 1,4‐dioxane as the best conditions for these reactions (dcpf=1,1′‐bis(dicyclohexylphosphino)ferrocene). Attempted O6‐demethylation, as well as the replacement of the C‐6 methoxy group by amines, was unsuccessful, which led to the consideration of Pd‐cleavable groups such that C? C cross‐coupling and O6‐deprotection could be accomplished in a single step. Thus, inosine 2‐chloro‐O6‐allylinosine was chosen as the substrate and, after re‐evaluation of the cross‐coupling conditions with 2‐chloro‐O6‐methylinosine as a model substrate, one‐step C? C cross‐coupling/deprotection reactions were performed with the O6‐allyl analogue. These reactions are the first such examples of a one‐pot procedure for the modification and deprotection of purine nucleosides under C? C cross‐coupling conditions.  相似文献   

15.
We report CH/π hydrogen‐bond‐driven self‐assembly in π‐conjugated skeletons based on oligophenylenevinylenes (OPVs) and trace the origin of interactions at the molecular level by using single‐crystal structures. OPVs were designed with appropriate pendants in the aromatic core and varied by hydrocarbon or fluorocarbon tails along the molecular axis. The roles of aromatic π‐stack, van der Waals forces, fluorophobic effect and CH/π interactions were investigated on the theromotropic liquid crystallinity of OPV molecules. Single‐crystal structures of hydrocarbon OPVs provided direct evidence for the existence of CH/π interactions between the π‐ring (H‐bond acceptor) and alkyl C? H (H‐bond donor). The four important crystallographic parameters, dc?x=3.79 Å, θ=21.49°, φ=150.25° and dHp?x=0.73 Å, matched in accordance with typical CH/π interactions. The CH/π interactions facilitate the close‐packing of mesogens in xy planes, which were further protruded along the c axis producing a lamellar structure. In the absence of CH/π interactions, van der Waals interactions drove the assembly towards a Schlieren nematic texture. Fluorocarbon OPVs exhibited smectic liquid‐crystalline textures that further underwent Smectic A (SmA) to Smectic C (SmC) phase transitions with shrinkage up to 11 %. The orientation and translational ordering of mesogens in the liquid‐crystalline (LC) phases induced H‐ and J‐type molecular arrangements in fluorocarbon and hydrocarbon OPVs, respectively. Upon photoexcitation, the H‐ and J‐type molecular arrangements were found to emit a blue or yellowish/green colour. Time‐resolved fluorescence decay measurements confirmed longer lifetimes for H‐type smectic OPVs relative to that of loosely packed one‐dimensional nematic hydrocarbon‐tailed OPVs.  相似文献   

16.
A straightforward high‐yield synthetic route to the cationic hydrido‐arene complexes [RuH(η6‐arene)(binap or MeO biphep)](CF3SO3), with a variety of arenes containing both donor and acceptor substituents, is described. 13C‐NMR Data for these complexes are reported. Several of these Ru‐complexes have been used as transfer‐hydrogenation catalysts in the reduction of acetophenone.  相似文献   

17.
18.
The electron ionization mass spectra of the title compounds (1: a R = H, b 2-CH(3), c 4-CH(3), d 2,3-diMe, e 2-OCH(3), f 4-OCH(3), g 2-Cl, h 3-Cl, i 4-Cl, j 3,4-diCl) were recorded at 70 eV to determine the effects of substituents and the possible keto-enol tautomerism. The compounds showed several common fragment ions but also fragment ions which divided them into three classes, namely 1a-1d (parent compound and Me-substituted derivatives), 1e and 1f (MeO-substituted derivatives), and 1g-1j (Cl-substituted derivatives). The presence of the HOCN(+.) ion as well as the exponential dependence of its total ion current in the case of p- and also 3-Cl-substituted compounds (1a, c, f, h-j) on the Hammett sigma constants and the loss of CHO or one or two HOCN moieties can be somewhat easier explained by the presence of the enol form but as a whole the results support the predominance of the keto form, in parallel to the situation in solution.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号