首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Aircraft holding around busy airports may be requested to sustain as much as 45 min of icing before landing or being diverted to another airport. In this paper, a three‐dimensional mesh deformation scheme, based on a structural frame analogy, is proposed for the numerical simulation of ice accretion during extended exposure to adverse weather conditions. The goal is to provide an approach that is robust and efficient enough to delay or altogether avoid re‐meshing while preserving (enforcing) nearly orthogonal elements at the highly distorted ice surface. Robustness is achieved by suitably modifying the axial and torsional stiffness components of the frame elements in order to handle large and irregular grid displacements typical of in‐flight icing. Computational efficiency is obtained by applying the mesh displacement to an automatically selected small subset of the entire computational domain. The methodology is validated first in the case of deformations typical of fluid‐structure interaction problems, including wing bending, a helicopter rotor in forward flight, and the twisting of a high‐lift wing configuration. The approach is then assessed for aero‐icing on two swept wings and compared against experimental measurements where available. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a numerical method for simulating turbulent flows via coupling the Boltzmann BGK equation with Spalart–Allmaras one equation turbulence model. Both the Boltzmann BGK equation and the turbulence model equation are carried out using the finite volume method on unstructured meshes, which is different from previous works on structured grid. The application of the gas‐kinetic scheme is extended to the simulation of turbulent flows with arbitrary geometries. The adaptive mesh refinement technique is also adopted to reduce the computational cost and improve the efficiency of meshes. To organize the unstructured mesh data structure efficiently, a non‐manifold hybrid mesh data structure is extended for polygonal cells. Numerical experiments are performed on incompressible flow over a smooth flat plate and compressible turbulent flows around a NACA 0012 airfoil using unstructured hybrid meshes. These numerical results are found to be in good agreement with experimental data and/or other numerical solutions, demonstrating the applicability of the proposed method to simulate both subsonic and transonic turbulent flows. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we present an approach of dynamic mesh adaptation for simulating complex 3‐dimensional incompressible moving‐boundary flows by immersed boundary methods. Tetrahedral meshes are adapted by a hierarchical refining/coarsening algorithm. Regular refinement is accomplished by dividing 1 tetrahedron into 8 subcells, and irregular refinement is only for eliminating the hanging points. Merging the 8 subcells obtained by regular refinement, the mesh is coarsened. With hierarchical refining/coarsening, mesh adaptivity can be achieved by adjusting the mesh only 1 time for each adaptation period. The level difference between 2 neighboring cells never exceeds 1, and the geometrical quality of mesh does not degrade as the level of adaptive mesh increases. A predictor‐corrector scheme is introduced to eliminate the phase lag between adapted mesh and unsteady solution. The error caused by each solution transferring from the old mesh to the new adapted one is small because most of the nodes on the 2 meshes are coincident. An immersed boundary method named local domain‐free discretization is employed to solve the flow equations. Several numerical experiments have been conducted for 3‐dimensional incompressible moving‐boundary flows. By using the present approach, the number of mesh nodes is reduced greatly while the accuracy of solution can be preserved.  相似文献   

4.
In this paper, a moving mesh BGK scheme (MMBGK) for multi‐material flow computations is proposed. The basic idea of constructing the MMBGK is to couple the Lagrangian method, which tracks material interfaces and keeps the interfaces sharp, with a remapping‐free ALE‐type kinetic method within each single material region, where the kinetic method is based on the BGK (Bhatnagar–Gross–Krook) model. Within each single material region, a numerical flux formulation is developed on moving meshes from motion of microscope particles, and the mesh velocity is determined by requiring both mesh adaptation for accuracy and robustness, such that the grids are moving towards to the regions with high flow gradients in a way of diffusive mechanism (velocity) to adjust the distances between neighboring cells, thus increasing the numerical accuracy. To keep the sharpness of material interfaces, the Lagrangian velocity and flux are constructed at the interfaces only. Consequently, a BGK‐scheme‐based ALE‐type method (i.e., the MMBGK scheme) for multi‐material flows is constructed. Numerical examples in one and two dimensions are presented to illustrate the accuracy and robustness of the MMBGK scheme. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
We present a novel method to model large deformation fluid‐structure‐fracture interaction, which is characterized by the fact that the fluid‐induced loads lead to fracture of the structure and the fluid medium fills the resulting crack opening; the mutual interaction between the crack faces and the surrounding fluid contributes substantially to the overall dynamics. A mesh refitting approach is used to model the quasi‐static fracture of the structure, and a robust embedded interface formulation is used to solve the fluid flow equations. The proposed method uses a strongly coupled partitioned scheme with Aitken's Δ2 method as convergence accelerator. Selected numerical examples of increasing complexity are presented to evaluate the performance of the proposed fluid‐structure‐fracture coupling algorithm. The most difficult simulation of the reported examples involves a number of complex phenomena: mixed‐mode crack propagation through the structure, fluid starts to fill the crack opening, complete fracture of the structure into two pieces of which one is carried away by the flow.  相似文献   

6.
In this paper, the circular function‐based gas‐kinetic scheme (CGKS), which was originally developed for simulation of flows on stationary grids, is extended to solve moving boundary problems on moving grids. Particularly, the unsteady flows through oscillating cascades are our major interests. The main idea of the CGKS is to discretize the macroscopic equations by the finite volume method while the fluxes at the cell interface are evaluated by locally reconstructing the solution of the continuous Boltzmann Bhatnagar–Gross–Krook equation. The present solver is based on the fact that the modified Boltzmann equation, which is expressed in a moving frame of reference, can recover the corresponding macroscopic equations with Chapman–Enskog expansion analysis. Different from the original Maxwellian function‐based gas‐kinetic scheme, in improving the computational efficiency, a simple circular function is used to describe the equilibrium state of distribution function. Considering that the concerned cascade oscillating problems belong to cases that the motion of surface boundary is known a priori, the dynamic mesh method is suitable and is adopted in the present work. In achieving the mesh deformation with high quality and efficiency, a hybrid dynamic mesh method named radial basic functions‐transfinite interpolation is presented and applied for cascade geometries. For validation, several numerical test cases involving a wide range are investigated. Numerical results show that the developed CGKS on moving grids is well applied for cascade oscillating flows. And for some cases where nonlinear effects are strong, the solution accuracy could be effectively improved by using the present method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
An unstructured dynamic mesh adaptation and load balancing algorithm has been developed for the efficient simulation of three‐dimensional unsteady inviscid flows on parallel machines. The numerical scheme was based on a cell‐centred finite‐volume method and the Roe's flux‐difference splitting. Second‐order accuracy was achieved in time by using an implicit Jacobi/Gauss–Seidel iteration. The resolution of time‐dependent solutions was enhanced by adopting an h‐refinement/coarsening algorithm. Parallelization and load balancing were concurrently achieved on the adaptive dynamic meshes for computational speed‐up and efficient memory redistribution. A new tree data structure for boundary faces was developed for the continuous transfer of the communication data across the parallel subdomain boundary. The parallel efficiency was validated by applying the present method to an unsteady shock‐tube problem. The flows around oscillating NACA0012 wing and F‐5 wing were also calculated for the numerical verification of the present dynamic mesh adaptation and load balancing algorithm. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
The accuracy of drag prediction in unstructured mesh CFD solver of TAS (Tohoku University Aerodynamic Simulation) code is discussed using a drag decomposition method. The drag decomposition method decomposes total drag into wave, profile, induced and spurious drag components, the latter resulting from numerical diffusion and errors. The mesh resolution analysis is conducted by the drag decomposition method. The effect of an advanced unstructured mesh scheme of U‐MUSCL reconstruction is also investigated by the drag decomposition method. The computational results show that the drag decomposition method reliably predicts drag and is capable of meaningful drag decomposition. The accuracy of drag prediction is increased by eliminating the spurious drag component from the total drag. It is also confirmed that the physical drag components are almost independent of the mesh resolution and scheme modification. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The idea of hp‐adaptation, which has originally been developed for compact schemes (such as finite element methods), suggests an adaptation scheme using a mixture of mesh refinement and order enrichment based on the smoothness of the solution to obtain an accurate solution efficiently. In this paper, we develop an hp‐adaptation framework for unstructured finite volume methods using residual‐based and adjoint‐based error indicators. For the residual‐based error indicator, we use a higher‐order discrete operator to estimate the truncation error, whereas this estimate is weighted by the solution of the discrete adjoint problem for an output of interest to form the adaptation indicator for adjoint‐based adaptations. We perform our adaptation by local subdivision of cells with nonconforming interfaces allowed and local reconstruction of higher‐order polynomials for solution approximations. We present our results for two‐dimensional compressible flow problems including subsonic inviscid, transonic inviscid, and subsonic laminar flow around the NACA 0012 airfoil and also turbulent flow over a flat plate. Our numerical results suggest the efficiency and accuracy advantages of adjoint‐based hp‐adaptations over uniform refinement and also over residual‐based adaptation for flows with and without singularities.  相似文献   

10.
In this paper a finite volume scheme for the heterogeneous and anisotropic diffusion equations is proposed on general, possibly nonconforming meshes. This scheme has both cell‐centered unknowns and vertex unknowns. The vertex unknowns are treated as intermediate ones and are expressed as a linear weighted combination of the surrounding cell‐centered unknowns, which reduces the scheme to a completely cell‐centered one. We propose two types of new explicit weights which allow arbitrary diffusion tensors, and are neither discontinuity dependent nor mesh topology dependent. Both the derivation of the scheme and that of new weights satisfy the linearity‐preserving criterion which requires that a discretization scheme should be exact on linear solutions. The resulting new scheme is called as the linearity‐preserving cell‐centered scheme and the numerical results show that it maintain optimal convergence rates for the solution and flux on general polygonal distorted meshes in case that the diffusion tensor is taken to be anisotropic, at times heterogeneous, and/or discontinuous. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper a layer‐structured finite volume model for non‐hydrostatic 3D environmental free surface flow is presented and applied to several test cases, which involve the computation of gravity waves. The 3D unsteady momentum and mass conservation equations are solved in a collocated grid made of polyhedrons, which are built from a 2D horizontal unstructured mesh, by just adding several horizontal layers. The mesh built in such a way is unstructured in the horizontal plane, but structured in the vertical direction. This procedure simplifies the mesh generation and at the same time it produces a well‐oriented mesh for stratified flows, which are common in environmental problems. The model reduces to a 2D depth‐averaged shallow water model when one single layer is defined in the mesh. Pressure–velocity coupling is achieved by the Semi‐Implicit Method for Pressure‐Linked Equations algorithm, using Rhie–Chow interpolation to stabilize the pressure field. An attractive property of the model proposed is the ability to compute the propagation of short waves with a rather coarse vertical discretization. Several test cases are solved in order to show the capabilities and numerical stability of the model, including a rectangular free oscillating basin, a radially symmetric wave, short wave propagation over a 1D bar, solitary wave runup on a vertical wall, and short wave refraction over a 2D shoal. In all the cases the numerical results are compared either with analytical or with experimental data. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
A complete reconnection‐based arbitrary Lagrangian–Eulerian (ReALE) strategy devoted to the computation of hydrodynamic applications for compressible fluid flows is presented here. In ReALE, we replace the rezoning phase of classical ALE method by a rezoning where we allow the connectivity between cells of the mesh to change. This leads to a polygonal mesh that recovers the Lagrangian features in order to follow more efficiently the flow. Those reconnections allow to deal with complex geometries and high vorticity problems contrary to ALE method. For optimizing the remapping phase, we have modified the idea of swept‐integration‐based. The new method is called swept‐intersection‐based remapping method. We demonstrate that our method can be applied to several numerical examples representative of hydrodynamic experiments.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The effectiveness and usefulness of further enhancing the shock resolution of a second‐order accurate scheme for open‐channel flows by using an adaptive grid is investigated. The flux‐difference‐splitting (FDS) scheme based on the Lax–Wendroff numerical flux is implemented on a fixed as well as on a self‐adjusting grid for this purpose. The grid‐adjusting procedure, developed by Harten and Hyman, adjusts the grid by averaging the local characteristic velocities with respect to the signal amplitude in such a way that a shock always lies on a mesh point. This enables a scheme capable of perfectly resolving a stationary shock to capture a shock that moves from mesh point to mesh point. The Roe's approximate Jacobian is used for conservation and consistency, while theoretically sound treatment for satisfying entropy inequality conditions ensures physically realistic solutions. Details about inclusion of source terms, often left out of analyses for the homogeneous part of governing equations, are also explained. The numerical results for some exacting problems are compared with analytical as well as experimental results for examining improvements in resolution of discontinuities by the adaptive grid. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, a local mesh refinement (LMR) scheme on Cartesian grids for large‐eddy simulations is presented. The approach improves the calculation of ghost cell pressures and velocities and combines LMR with high‐order interpolation schemes at the LMR interface and throughout the rest of the computational domain to ensure smooth and accurate transition of variables between grids of different resolution. The approach is validated for turbulent channel flow and flow over a matrix of wall‐mounted cubes for which reliable numerical and experimental data are available. Comparisons of predicted first‐order and second‐order turbulence statistics with the validation data demonstrated a convincing agreement. Importantly, it is shown that mean streamwise velocities and fluctuating turbulence quantities transition smoothly across coarse‐to‐fine and fine‐to‐coarse interfaces. © 2016 The Authors International Journal for Numerical Methods in Fluids Published by John Wiley & Sons Ltd  相似文献   

15.
A multi‐block curvilinear mesh‐based adaptive mesh refinement (AMR) method is developed to satisfy the competing objectives of improving accuracy and reducing cost. Body‐fitted curvilinear mesh‐based AMR is used to capture flow details of various length scales. A series of efforts are made to guarantee the accuracy and robustness of the AMR system. A physics‐based refinement function is proposed, which is proved to be able to detect both shock wave and vortical flow. The curvilinear mesh is refined with cubic interpolation, which guarantees the aspect ratio and smoothness. Furthermore, to enable its application in complex configurations, a sub‐block‐based refinement strategy is developed to avoid generating invalid mesh, which is the consequence of non‐smooth mesh lines or singular geometry features. A newfound problem of smaller wall distance, which negatively affects the stability and is never reported in the literature, is also discussed in detail, and an improved strategy is proposed. Together with the high‐accuracy numerical scheme, a multi‐block curvilinear mesh‐based AMR system is developed. With a series of test cases, the current method is verified to be accurate and robust and be able to automatically capture the flow details at great cost saving compared with the global refinement. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
This paper describes the development of a mesh deformation method used for aero‐thermo‐mechanical coupling of turbo‐engine components. The method is based on the nonlinear solution of an elastic medium analogy, solved using finite element discretisation and modified to let the boundary nodes be free to slide over the deflected surfaces. This sliding technique relies on a B‐spline reconstruction of the moving boundary and increases the robustness of the method in situations where the boundary deflection field presents significant gradients or large relative motion between two distinct boundaries. The performance of the method is illustrated with the application to an interstage cavity of a turbine assembly, subjected to the deformations computed by a coupled thermo‐mechanical analysis of the engine component. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
An Arbitrary Lagrangian–Eulerian method for the calculation of incompressible Navier–Stokes equations in deforming geometries is described. The mesh node connectivity is defined by a Delaunay triangulation of the nodes, whereas the discretized equations are solved using finite volumes defined by the Voronoi dual of the triangulation. For prescribed boundary motion, an automatic node motion algorithm provides smooth motion of the interior nodes. Changes in the connectivity of the nodes are made through the use of local transformations to maintain the mesh as Delaunay. This allows the nodes and their associated Voronoi finite volumes to migrate through the domain in a free manner, without compromising the quality of the mesh. An MAC finite volume solver is applied on the Voronoi dual using a cell‐centred non‐staggered formulation, with cell‐face velocities being calculated by the Rhie–Chow momentum interpolation. Advective fluxes are approximated with the third‐order QUICK differencing scheme. The solver is demonstrated via its application to a driven cavity flow, and the flow about flapping aerofoil geometries. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, a central essentially non‐oscillatory approximation based on a quadratic polynomial reconstruction is considered for solving the unsteady 2D Euler equations. The scheme is third‐order accurate on irregular unstructured meshes. The paper concentrates on a method for a metric‐based goal‐oriented mesh adaptation. For this purpose, an a priori error analysis for this central essentially non‐oscillatory scheme is proposed. It allows us to get an estimate depending on the polynomial reconstruction error. As a third‐order error is not naturally expressed in terms of a metric, we propose a least‐square method to approach a third‐order error by a quadratic term. Then an optimization problem for the best mesh metric is obtained and analytically solved. The resulting mesh optimality system is discretized and solved using a global unsteady fixed‐point algorithm. The method is applied to an acoustic propagation benchmark.  相似文献   

19.
This paper introduces a vertex‐centered linearity‐preserving finite volume scheme for the heterogeneous anisotropic diffusion equations on general polygonal meshes. The unknowns of this scheme are purely the values at the mesh vertices, and no auxiliary unknowns are utilized. The scheme is locally conservative with respect to the dual mesh, captures exactly the linear solutions, leads to a symmetric positive definite matrix, and yields a nine‐point stencil on structured quadrilateral meshes. The coercivity of the scheme is rigorously analyzed on arbitrary mesh size under some weak geometry assumptions. Also, the relation with the finite volume element method is discussed. Finally, some numerical tests show the optimal convergence rates for the discrete solution and flux on various mesh types and for various diffusion tensors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A finite‐volume multi‐stage (FMUSTA) scheme is proposed for simulating the free‐surface shallow‐water flows with the hydraulic shocks. On the basis of the multi‐stage (MUSTA) method, the original Riemann problem is transformed to an independent MUSTA mesh. The local Lax–Friedrichs scheme is then adopted for solving the solution of the Riemann problem at the cell interface on the MUSTA mesh. The resulting first‐order monotonic FMUSTA scheme, which does not require the use of the eigenstructure and the special treatment of entropy fixes, has the generality as well as simplicity. In order to achieve the high‐resolution property, the monotonic upstream schemes for conservation laws (MUSCL) method are used. For modeling shallow‐water flows with source terms, the surface gradient method (SGM) is adopted. The proposed schemes are verified using the simulations of six shallow‐water problems, including the 1D idealized dam breaking, the steady transcritical flow over a hump, the 2D oblique hydraulic jump, the circular dam breaking and two dam‐break experiments. The simulated results by the proposed schemes are in satisfactory agreement with the exact solutions and experimental data. It is demonstrated that the proposed FMUSTA schemes have superior overall numerical accuracy among the schemes tested such as the commonly adopted Roe and HLL schemes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号