首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New glycosyl donors have been developed that contained several para‐substituted O‐aryl protecting groups and their stereoselectivity for the glycosylation reaction was evaluated. A highly β‐selective glycosylation reaction was achieved by using thioglycosides that were protected by 4‐nitrophenyl (NP) groups, which were introduced by using the corresponding diaryliodonium triflate. Analysis of the stereoselectivities of several glycosyl donors indicated that the β‐glycosides were obtained through an SN2‐type displacement from the corresponding α‐glycosyl triflate. The NP group could be removed by reduction of the nitro group and acylation, followed by oxidation with ceric ammonium nitrate (CAN).  相似文献   

2.
3.
Oxygen‐ and nitrogen‐containing heterocyclic compounds are widely recognized as key components in many natural products and biologically relevant molecules, but often the problem comes down to methodologies in synthesizing them. Halocyclization of olefinic substrates is a promising strategy in the construction of O‐ and N‐heterocyclic compounds, which further signifies the development of their asymmetric variants. Over the past years, our group has been devoted to this particular area of asymmetric electrophilic halocyclization with chalcogen‐containing molecules as catalysts. In this account, the main focus is on the development of our novel chiral catalysts and applications derived from the reaction products.  相似文献   

4.
Oligosaccharides and glycoconjugates play an important role in biological processes. The use of these complex polymers as biocompatible materials for medicinal applications as well as therapeutic agents for the treatment of several diseases has attracted considerable interest. However, these investigations require large and pure amounts of glycostructures. Glucosamine is one of the major building blocks of these highly important glycoconjugates. Recently, considerable synthetic efforts have been devoted to improving stereoselective glycosylation. In this Focus review, the role of the amine protecting group in the outcome of the glucosamine glycosylation reaction is highlighted.  相似文献   

5.
6.
7.
8.
Hydrogen isotopes are unique tools for identifying and understanding biological and chemical processes. Hydrogen isotope labelling allows for the traceless and direct incorporation of an additional mass or radioactive tag into an organic molecule with almost no changes in its chemical structure, physical properties, or biological activity. Using deuterium‐labelled isotopologues to study the unique mass‐spectrometric patterns generated from mixtures of biologically relevant molecules drastically simplifies analysis. Such methods are now providing unprecedented levels of insight in a wide and continuously growing range of applications in the life sciences and beyond. Tritium (3H), in particular, has seen an increase in utilization, especially in pharmaceutical drug discovery. The efforts and costs associated with the synthesis of labelled compounds are more than compensated for by the enhanced molecular sensitivity during analysis and the high reliability of the data obtained. In this Review, advances in the application of hydrogen isotopes in the life sciences are described.  相似文献   

9.
The synthesis of densly functionized α‐silyl‐β‐hydroxyl vinylsilanes via ruthenium‐catalyzed multicomponent reaction (MCR) is reported herein. Exceptionally high regio‐ and diastereoselectivity was achieved by employing an unprecedented hydrosilylation of bifunctional silyl‐propargyl boronates. The simple protocol, mild reaction conditions, and unique tolerability of this method make it a valuable tool for the synthesis of highly elaborated building blocks. The one‐pot synthesis of stereodefined olefins, the generation of a valuable cyclohexene building block through a four‐component MCR, and further functionalization in an abundance of diastereoselective reactions is disclosed herein.  相似文献   

10.
A ruthenium‐catalyzed carbonylative C?H bond arylation process for the three‐component synthesis of complex aryl–(hetero)aryl ketones in an aqueous solution has been developed. By exploiting the ortho‐activating effect of nitrogen‐containing directing groups, a regioselective, successive twofold C(sp2)?C(sp2) bond formation has been achieved. This straightforward catalytic process provides access to versatile products prevalent in multiple bioactive compounds and supplies a valuable functional group for subsequent transformations.  相似文献   

11.
A safety‐catch cysteine protecting group, S‐4,4′‐dimethylsulfinylbenzhydryl (Msbh), was designed and developed to expand the capabilities of synthetic strategies for the regioselective formation of disulfide bonds in cysteine‐rich peptides. The directed regioselective synthesis of human hepcidin, which contains four disulfide bonds, was undertaken and led to a high‐resolution NMR structure under more physiologically relevant conditions than previously. Conversely, hepcidin synthesized with the formerly assigned vicinal disulfide‐bond connectivity displayed significant conformational heterogeneity under similar conditions. The two synthetic forms of human hepcidin induced ferroportin internalization with apparent EC50 values of 2.0 (native fold, 1 ) and 4.4 nM (non‐native fold, 2 ), with 2 undergoing isomerization to 1 in the presence of ferroportin expressing cells.  相似文献   

12.
Light as an external trigger is a valuable and easily controllable tool for directing chemical reactions with high spatial and temporal accuracy. Two o‐nitrobenzyl derivatives, benzoyl‐ and thiophenyl‐NPPOC, undergo photo‐deprotection with significantly improved efficiency over that of the commonly used NPPOC group. The two‐ and twelvefold increase in photo‐deprotection efficiency was proven using photolithograph synthesis of microarrays.  相似文献   

13.
14.
Carbohydrates contain numerous hydroxyl groups and sometimes amine functionalities which lead to a variety of complex structures. In order to discriminate each hydroxyl group for the synthesis of complex oligosaccharides, protecting group manipulations are essential. Although the primary role of a protecting group is to temporarily mask a particular hydroxyl/amino group, it plays a greater role in tuning the reactivity of coupling partners as well as regioselectivity and stereoselectivity of glycosylations. Several protecting groups offer anchimeric assistance in glycosylation. They also alter the solubility of substrates and thereby influence the reaction outcome. Since oligosaccharides comprise branched structures, the glycosyl donors and acceptors need to be protected with orthogonal protected groups that can be selectively removed one at a time without affecting other groups. This minireview is therefore intended to provide a discussion on new protecting groups for amino and hydroxyl groups, which have been introduced over last ten years in the field of carbohydrate synthesis. These protecting groups are also useful for synthesizing non‐carbohydrate target molecules as well.  相似文献   

15.
The hydroauration of internal and terminal alkynes by gold(III) hydride complexes [(C^N^C)AuH] was found to be mediated by radicals and proceeds by an unexpected binuclear outer‐sphere mechanism to cleanly form trans‐insertion products. Radical precursors such as azobisisobutyronitrile lead to a drastic rate enhancement. DFT calculations support the proposed radical mechanism, with very low activation barriers, and rule out mononuclear mechanistic alternatives. These alkyne hydroaurations are highly regio‐ and stereospecific for the formation of Z‐vinyl isomers, with Z/E ratios of >99:1 in most cases.  相似文献   

16.
17.
18.
Dynamic turnover of cell‐surface glycans is involved in a myriad of biological events, making this process an attractive target for in vivo molecular imaging. Metabolic glycan labeling coupled with bioorthogonal chemistry has paved the way for visualizing glycans in living organisms. However, a two‐step labeling sequence is required, which suffers from the tissue‐penetration difficulties of the imaging probes. Here, by exploring the substrate promiscuity of endogenous glycosyltransferases, we developed a single‐step fluorescent glycan labeling strategy by using fluorophore‐tagged analogues of the nucleotide sugars. Injecting fluorophore‐tagged sialic acid and fucose into the yolk of zebrafish embryos at the one‐cell stage enables systematic imaging of sialylation and fucosylation in live zebrafish embryos at distinct developmental stages. From these studies, we obtained insights into the role of sialylated and fucosylated glycans in zebrafish hematopoiesis.  相似文献   

19.
Rather than lead to the usual deoxygenation pathway, metal carbenes derived from α‐diazo‐β‐ketoesters undergo three‐atom insertions into epoxides using a combination of 1,10‐phenanthroline and [CpRu(CH3CN)3][BArF] as the catalyst. Original 1,4‐dioxene motifs are obtained as single regio‐ and stereoisomers. A perfect syn stereochemistry (retention, e.r. up to 97:3) is observed for the ring opening, which behaves as an SN1‐like transformation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号