首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CoII, NiII, CuII, ZnII and CdII complexes of N,N-bis(2-{[(2-methyl-2-phenyl-1,3-dioxolan-4-yl)methyl]amino}butyl)N′,N′-dihydroxyethanediimidamide (LH2) were synthesized and characterized by elemental analyses, IR, 1H- and 13C-NMR spectra, electronic spectra, magnetic susceptibility measurements, conductivity measurements and thermogravimetric analyses (TGA). The CoII, NiII and CuII complexes of LH2 were synthesized with 1?:?2 metal ligand stoichiometry. ZnII and CdII complexes with LH2 have a metal ligand ratio of 1?:?1. The reaction of LH2 with CoII, NiII, CuII, ZnII and CdII chloride give complexes Ni(LH)2, Cu(LH)2, Zn(LH2)(Cl)2, Cd(LH2)(Cl)2, respectively.  相似文献   

2.
The reaction of 3-formylsalicylic acid with 1,2-bis(o-aminophenylthio)ethane yielded a Schiff base with eight donor centres N2S2O4 of which the inner compartment is of an N2S2O2 type and the outer is of the O2O2 type. The base forms several mononuclear homo- and hetero-dinuclear complexes: e.g. mononuclear CuII, NiII and dinuclear CuII, NiII, UO2 VI complexes. Hetero-dinuclear complexes {[M]M}, where M = the inner metal ion CuII, NiII and M = the outer metal ion PdII, UO2 VI are also reported. The complexes were characterised by elemental analyses, spectral, thermal and magnetic measurements. Dicopper and dinickel complexes exhibit subnormal magnetic moments showing spin pairing between two metal centres, via the phenolato oxygen, whereas other mono-copper and mono-nickel complexes (both mononuclear and hetero-dinuclear) show the expected magnetic behaviour for 1e and 2e, respectively. The e.s.r. spectra of copper complexes also support the above behaviour.  相似文献   

3.
Self‐assembled bi‐ and polymetallic complexes of CoII, NiII, ZnII, and CdII were obtained by the reaction of 4,4′‐azopyridine (azpy) with metal tri‐tert‐butoxysilanethiolates (Co, 1 ; Cd, 2 ), acetylacetonates (Ni, 3 ; Zn, 4 ), and acetates (Cd, 5 ). All compounds were characterized by single‐crystal X‐ray structure analysis, elemental analysis, FTIR spectroscopy, and thermogravimetry. Complexes 1 , 2 and 4 , 5 exhibit diverse structural conformations: 1 is bimetallic, 2 and 4 are 1D coordination polymers, and 5 is a 2D coordination framework formed from bimetallic units. The obtained complexes contain metal atoms bridged by a molecule of azpy. The luminescent properties of 1–5 were investigated in the solid state.  相似文献   

4.
The study reports the synthesis of complexes Co(HL)Cl2 ( 1 ), Ni(HL)Cl2 ( 2 ), Cu(HL)Cl2 ( 3 ), and Zn(HL)3Cl2 ( 4 ) with the title ligand, 5‐(pyrazin‐2‐yl)‐1,2,4‐triazole‐5‐thione (HL), and their characterization by elemental analyses, ESI‐MS (m/z), FT‐IR and UV/Vis spectroscopy, as well as EPR in the case of the CuII complex. The comparative analysis of IR spectra of the metal ion complexes with HL and HL alone indicated that the metal ions in 1 , 2 , and 3 are chelated by two nitrogen atoms, N(4) of pyrazine and N(5) of triazole in the thiol tautomeric form, whereas the ZnII ion in 4 is coordinated by the non‐protonated N(2) nitrogen atom of triazole in the thione form. pH potentiometry and UV/Vis spectroscopy were used to examine CoII, NiII, and ZnII complexes in 10/90 (v/v) DMSO/water solution, whereas the CuII complex was examined in 40/60 (v/v) DMSO/water solution. Monodeprotonation of the thione triazole in solution enables the formation of the L:M = 1:1 species with CoII, NiII and ZnII, the 2:1 species with CoII and ZnII, and the 3:1 species with ZnII. A distorted tetrahedral arrangement of the CuII complex was suggested on the basis of EPR and Vis/NIR spectra.  相似文献   

5.
The synthesis and characterization of some transition metal cis-3,7-dimethyl-2,6-octadiensemicarbazone (CDOSC) complexes are reported. The ligand CDOSC yields: [ML2 Cl2] and [ML2 Cl2] Cl type complexes, where M = CrIII, MnII, FeIII, CoII, NiII, CuII, ZnII, CdII and HgII, L = CDOSC. Structures of the complexes were determined using elemental analysis, molar conductivity, magnetic measurements, i.r. and electronic, as well as n.m.r spectra. CDOSC acts as a bidentate ligand in all the complexes. All the newly synthesized metal complexes, as well as the ligand, were screened for their antibacterial activity. All the complexes exhibit strong inhibitory action against Gram (+) bacteria Staphylococcus aureus and Gram (−) bacteria Escherichia coli. The antibacterial activities of the complexes are stronger than those of the ligand CDOSC itself.  相似文献   

6.
CoII,III, NiII, and CuII complexes of new dehydroacetic acid N4-substituted thiosemicarbazones have been studied. The substituted thiosemicarbazones, N4-dimethyl-(DA4DM), N4-diethyl-(DA4DE), 3-piperidyl-(DApip) and 3-hexamethyleneiminyl-(DAhexim), when reacted with the metal chlorides, produced two CoII complexes, [Co(DA4DE)Cl2] and [Co(DAhexim)2Cl2]; two CoIII complexes, [Co(DA4DM-H)2Cl] and [Co(DApip-H)(DApip-2H)]; a paramagnetic NiII complex, [Ni(DAhexim)(DAhexim-H)Cl]; three diamagnetic NiII complexes, [Ni(DA4DM-H)Cl], [Ni(DA4DE-H)Cl] and [Ni(DApip-H)Cl]; and four CuII complexes with the analogous stoichiometry of the latter three NiII complexes. These new thiosemicarbazones have been characterized by their melting points, as well as i.r., electronic and 1H-n.m.r. spectra. The metal complexes have been characterized by i.r. and electronic spectra, and when possible, n.m.r. and e.s.r. spectra, as well as elemental analyses, molar conductivities, and magnetic susceptibilities. The crystal and molecular structure of the four-coordinate CuII complex, [Cu(DAhexim-H)Cl] has been determined by single crystal X-ray diffraction and the anionic ligand coordinates via an oxygen of the dehydroacetic acid and the thiosemicarbazone moiety's imine nitrogen and thione sulfur.  相似文献   

7.
Summary 2-Aminopyridine reacts with acetylacetone in the presence of VOII, MnII, FeII, CoII, NiII, and CuII metal salts to give complexes of the type [VO(Ap2ac)2X]X and [M(Ap2ac)2X2] where (Ap2ac) is the ligand formedin situ. The complexes are characterised as distorted octahedral by analyses, conductance, molecular weight, magnetic, electronic and i.r. spectral studies. The i.r. studies reveal that two molecules of aminopyridine are joined by a molecule of acetylacetone through a three carbon atom bridge and that the ligand coordinates through the azomethine and imino nitrogen atoms, whereas pyridine does not take part in coordination. The electronic spectra have been interpreted and tentative assignments are made. In the far i.r. spectra, various metal ligand vibrations are observed and discussed. Attempts to carry out electrophilic substitutions in the complexes failed.  相似文献   

8.
Neutral tetradentate chelate complexes of CuII, NiII, CoII, MnII, ZnII and VOII have been prepared in EtOH using Schiff bases derived from acetoacetanilido-4-aminoantipyrine and 2-aminophenol/2-aminothiophenol. Microanalytical data, magnetic susceptibility, i.r., u.v.–vis., 1H-n.m.r. and e.s.r. spectral techniques were used to confirm the structures of the chelates. Electronic absorption and i.r. spectra of the complexes suggest a square-planar geometry around the central metal ion, except for VOII and MnII complexes which have square-pyramidal and octahedral geometry respectively. The cyclic voltammetric data for the CuII complexes in MeCN show two waves for copper(II) copper(III) and copper(II) copper(I) couples, whereas the VOII complexes in MeCN show two waves for vanadium(IV) vanadium(V) and vanadium(IV) vanadium(III) couples. The e.s.r. spectra of the CuII, VOII and MnII complexes were recorded in DMSO solution and their salient features reported. The in vitro antimicrobial activity of the investigated compounds was tested against the microorganisms such as Salmonella typhi, Staphylococcus aureus, Klebsiella pneumoniae, Bacillus subtilis, Shigella flexneri, Pseudomonas aeruginosa, Aspergillus niger and Rhizoctonia bataicola. Most of the metal chelates have higher antimicrobial activity than the free ligands.  相似文献   

9.
To investigate the relationship between antimicrobial activities and the formation constants of CuII, NiII and CoII complexes with three Schiff bases, which were obtained by the condensation of 2-pyridinecarboxyaldehyde with DL-alanine, DL-valine and DL-phenylalanine, have been synthesized. Schiff bases and the complexes have been characterized on the basis of elemental analyses, magnetic moments (at ca. 25 °C), molar conductivity, thermal analyses and spectral (i.r., u.v., n.m.r.) studies. The i.r. spectra show that the ligands act in a monovalent bidentate fashion, depending on the metal salt used and the reaction pH = 9, 8 and 7 medium, for CuII, NiII and CoII, respectively. Square-planar, tetrahedral and octahedral structures are proposed for CuII, NiII and CoII, respectively. The protonation constants of the Schiff bases and stability constants of their ML-type complexes have been calculated potentiometrically in aqueous solution at 25 ± 0.1 °C and at 0.1 M KCl ionic strength. Antimicrobial activities of the Schiff bases and the complexes were evaluated for three bacteria (Bacillus subtillis, Staphylococcus aureus, and Escherichia coli) and a yeast (Candida albicans). The structure–activity correlation in Schiff bases and their metal(II) complexes are discussed, based on the effect of their stability contants.  相似文献   

10.
A simple, one‐step, supramolecular strategy was adopted to synthesize SnIV‐porphyrin‐based axially bonded triads and higher oligomers by using meso‐pyridyl SnIV porphyrin, meso‐hydroxyphenyl‐21,23‐dithiaporphyrin, and RuII porphyrin as building blocks and employing complementary and non‐interfering SnIV?O and RuII ??? N interactions. The multiporphyrin arrays are stable and robust and were purified by column chromatography. 1H, 1H–1H COSY and NOESY NMR spectroscopic studies were used to unequivocally deduce the molecular structures of SnIV‐porphyrin‐based triads and higher oligomers. Absorption and electrochemical studies indicated weak interaction among the different porphyrin units in triads and higher oligomers, in support of the supramolecular nature of the arrays. Steady‐state fluorescence studies on triads indicated the possibility of energy transfer in the singlet state from the basal SnIV porphyrin to the axial 21,23‐dithiaporphyrin. However, the higher oligomers were weakly fluorescent due to the presence of heavy RuII porphyrin unit(s), which quench the fluorescence of the SnIV porphyrin and 21,23‐dithiaporphyrin units.  相似文献   

11.
Synthesis of nickel(II) complexes of meso‐aryl‐substituted azacorroles was performed by Buchwald–Hartwig amination of a dipyrrin NiII complex with benzylamine through C? N and C? C coupling. The highly planar structure of NiII azacorroles was elucidated by X‐ray diffraction analysis. 1H NMR analysis and nucleus independent chemical shift (NICS) calculation on NiII azacorrole revealed its distinct aromaticity with [17]triaza‐annulene 18π conjugation. In addition, acylation of azacorrole selectively afforded N‐ and C‐acylated azacorroles depending on the reaction conditions, showing the dual reactivity of azacorroles.  相似文献   

12.
A series of mononuclear complexes of the type, [MLCl2] [M = CoII, NiII, CuII, and ZnII] with a pyrimidene‐type ligand, which was synthesized by the reaction of 2‐furaldehyde and 1, 8‐diaminonaphthalene, was obtained. The ligand and its complexes were characterized by elemental analysis, IR, NMR, EPR, and UV/Vis spectroscopy, ESI‐mass spectrometry, magnetic susceptibility, molar conductivity, and thermogravimetric analyses. On the basis of UV/Vis spectroscopic and magnetic susceptibility data, an octahedral arrangement was assigned around all metal ions. The low molar conductivity data for all the complexes show their non‐electrolytic nature. The thermal behavior of the complexes was studied by TGA analyses. The electrochemical study carried out on the CuII complex exhibits a quasi reversible redox process. The ligand and its complexes showed potential antioxidant and antimicrobial activities.  相似文献   

13.
New complexes of MnII, CoII, NiII, CuII, and CdII with bis(acetophenone) ethylenediamine and 5-chlorosalicylideneaniline or 5-bromosalicylideneaniline have been prepared and characterized on the basis of elemental analyses, thermogravimetric analyses, magnetic measurements, electronic and i.r. spectra. The antimicrobial activities of the complexes, ligands, control (dimethyl formamide) and metal salts were tested against Salmonella typhi (bacteria), Saccharomyces cerevisae (yeast), and two fungal species Lasiodiplodia theobromae and Fusarium oxysporum. The results are discussed.  相似文献   

14.
Summary A variety of metal(II) complexes of 2-carbethoxypyridine (L) have been prepared and characterised. With metal(II) chlorides the bis complexes can be formulated [ML2Cl2]o (M=CuII, NiII, CoII, FeII or MnII). The complexes are six-coordinate with 2-carbethoxypyridine acting as a bidentate ligandvia the pyridine nitrogen and the carbonyl group of the ester. The chloro complexes are nonelectrolytes in nitroethane; magnetic susceptibility measurements, i.r. and d-d electronic spectra are reported. With metal(II) perchlorate salts the complexes can be formulated as six-coordinate [ML2 (OH2)2] [ClO4]2 species containing ionic perchlorate. The ester exchanges of some of these complexes with a variety of primary alcohols have been investigated.  相似文献   

15.
The preparation and spectroscopic and structural characterization of three ZnII complexes with bis[N‐(2,6‐dimethylphenyl)imine]acenaphthene, L1, and with bis[N‐(2‐ethylphenyl)imine]acenaphthene, L2, are decribed herein. Two of the complexes were prepared from ZnCl2 and the third from Zn(NCS)2. One‐pot reaction techniques were used, leading to high yields. The complexes were characterized by microanalysis, IR and 1H NMR spectroscopy, and single‐crystal X‐ray diffraction. The structures of the complexes are significantly different, with the chloride‐containing species forming distorted tetrahedra around the metal, whereas its thiocyanate analog is dimeric, with each metal at the center of a distorted square pyramid, with bridging and terminal [SCN] ligands.  相似文献   

16.
The meta‐terphenyl diphosphine, m‐P2, 1 , was utilized to support Ni centers in the oxidation states 0, I, and II. A series of complexes bearing different substituents or ligands at Ni was prepared to investigate the dependence of metal–arene interactions on oxidation state and substitution at the metal center. Complex (m‐P2)Ni ( 2 ) shows strong Ni0–arene interactions involving the central arene ring of the terphenyl ligand both in solution and the solid state. These interactions are significantly less pronounced in Ni0 complexes bearing L‐type ligands ( 2‐L : L=CH3CN, CO, Ph2CN2), NiIX complexes ( 3‐X : X=Cl, BF4, N3, N3B(C6F5)3), and [(m‐P2)NiIICl2] ( 4 ). Complex 2 reacts with substrates, such as diphenyldiazoalkane, sulfur ylides (Ph2S?CH2), organoazides (RN3: R=para‐C6H4OMe, para‐C6H4CF3, 1‐adamantyl), and N2O with the locus of observed reactivity dependent on the nature of the substrate. These reactions led to isolation of an η1‐diphenyldiazoalkane adduct ( 2‐Ph2CN2 ), methylidene insertion into a Ni? P bond followed by rearrangement of a nickel‐bound phosphorus ylide ( 5 ) to a benzylphosphine ( 6) , Staudinger oxidation of the phosphine arms, and metal‐mediated nitrene insertion into an arene C? H bond of 1 , all derived from the same compound ( 2 ). Hydrogen‐atom abstraction from a NiI–amide ( 9 ) and the resulting nitrene transfer supports the viability of Ni–imide intermediates in the reaction of 1 with 1‐azido‐arenes.  相似文献   

17.
Summary Complexes of 2,6-dipicolinic acid hydrazide, DPH, with ZnII, CdII and HgII have been prepared and characterized by elemental analysis, i.r. and electronic spectra and by electrical conductance measurements. The ligand is terdentate, having coordination sites at two deprotonated amide-nitrogen and pyridine-nitrogen atoms. The ZnII and HgII complexes are pentacoordinate whereas the CdII complexes are hexacoordinate and have trigonal bipyramidal and pseudooctahedral stereochemistries, respectively. The Zn, Cd and Hg ions induce cyclization of DPH complexes upon reaction with-diketones. The complexes of macrocyclic ligands so formed have the same stereochemistries as those of DPH.  相似文献   

18.
A new family of trimetallic complexes of the form [(bpy)2M(phen‐Hbzim‐tpy)M′(tpy‐Hbzim‐phen)M(bpy)2]6+ (M=RuII, Os; M′=FeII, RuII, Os; bpy=2,2′‐bipyridine) derived from heteroditopic phenanthroline–terpyridine bridge 2‐{4‐[2,6‐di(pyridin‐2‐yl) pyridine‐4‐yl]phenyl}‐1H‐imidazole[4,5‐f][1,10]phenanthroline (phen‐Hbzim‐tpy) were prepared and fully characterized. Zn2+ was used to prepare mixed‐metal trimetallic complexes in situ by coordinating with the free tpy site of the monometallic precursors. The complexes show intense absorptions throughout the UV/Vis region and also exhibit luminescence at room temperature. The redox behavior of the compounds is characterized by several metal‐centered reversible oxidation and ligand‐centered reduction processes. Steady‐state and time‐resolved luminescence data show that the potentially luminescent RuII‐ and OsII‐based triplet metal‐to‐ligand charge‐transfer (3MLCT) excited states in the triads are quantitatively quenched, most likely by intercomponent energy transfer to the lower lying 3MLCT (for Ru and Os) or triplet metalcentered (3MC) excited states of the FeII subunit (nonluminescent). Interestingly, iron did not adversely affect the photophysics of the respective systems. This suggests that the multicomponent molecular‐wire‐like complexes investigated here can behave as efficient light‐harvesting antennas, because all the light absorbed by the various subunits is efficiently channeled to the subunit(s) in which the lowest‐energy excited states are located.  相似文献   

19.
The vibrational spectra of tetravalent metal halides (M = Si, Ge, Sn) and the corresponding dihalocarbene analogs MIIHal2, obtained by the authors, and the relevant published data are compared. The spectra of the MIIHal2 species exhibit inversion of the M-Hal stretching frequencies (νs(MIIHal) > ν as(MIIHal)). This can be used for analytical purposes and allows one to distinguish between the spectra of the MIV and MII halides. The IR and Raman spectra of the complexes of dihalogermylenes and -stannylenes with triphenylphosphine and 1,4-dioxane also exhibit inversion of the ν(MHal) stretching frequencies. This confirms the conclusion drawn earlier based on the analysis of the geometric parameters and reactivities of the complexes in question that the divalent state of the M atom in these species is retained. Dedicated to Academician N. K. Kochetkov on the occasion of his 90th birthday. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1089–1092, May, 2005.  相似文献   

20.
Transition metal complexes of Mn(II) and Ni(II) have been synthesized with novel bioactive Schiff's base ligand. Schiff's base ligand i.e. benzoylacetone‐bis(2‐amino‐4‐methylbenzothioazole) has been synthesized via condensation reaction between 2‐amino‐4‐methylbenzothioazole and benzoylacetone in 2:1 ratio, respectively. Synthesized ligand has been characterized using elemental analysis, infra‐red, 1H–NMR and mass spectroscopy techniques. Characterization of complexes was based on magnetic moment, molar conductance, elemental analysis, electronic spectra, infra‐red and EPR spectroscopic techniques. Molar conductance data suggest that metal complexes are non‐electrolytic in nature. Therefore, these complexes are formulated as [M(L)X2], where M = Mn(II), Ni(II), L = Schiff's base ligand, X = Cl?, CH3COO?, NO3?. Data of characterization study suggest octahedral geometry for Mn(II) and Ni(II) complexes. Geometry of metal complexes was also optimized with the help of computational study i.e. molecular modelling. Computational study also suggests octahedral geometry for complexes. Free ligand as well as its all metal complexes have been screened against the growth of pathogenic bacteria (E.coli, S.aureus) and fungi (C.albicans, C.krusei, C.parapsilosis, C.tropicalis) to assess their inhibition potential. The inhibition data revealed that metal complexes exhibit higher inhibition potential against the growth of bacteria and fungi microorganisms than free ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号