首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
锐钛矿(001)与(101)晶面在光催化反应中的作用   总被引:1,自引:0,他引:1  
采用水热法制备了(001)和(101)晶面暴露的单晶锐钛矿TiO2颗粒. 利用光还原沉积贵金属(Au, Ag, Pt)和光氧化沉积金属氧化物(PbO2, MnOx)的方法研究了暴露的锐钛矿(001)和(101)晶面在光催化中的作用. 通过透射电子显微镜(TEM)、扫描电子显微镜(STM)、能量色散X射线光谱仪(EDX)和X射线光电子能谱(XPS)的表征, 发现发生光还原反应生成的贵金属粒子主要沉积在暴露的锐钛矿(101)晶面上, 而发生光氧化反应产生的金属氧化物颗粒主要沉积在暴露的锐钛矿(001)晶面上. 此结果表明光激发产生的电子与空穴主要并分别分布在单晶锐钛矿TiO2的(101)与(001)晶面上, 并在其上参与光催化还原反应和氧化反应. 同时也表明暴露的不同晶面对光生电荷具有分离效应. 基于本研究可以认为同时暴露分别进行氧化和还原反应的晶面可以有效促进光催化反应.  相似文献   

2.
The chemical selectivity and faradaic efficiency of high-index Cu facets for the CO2 reduction reaction (CO2RR) is investigated. More specifically, shape-controlled nanoparticles enclosed by Cu {hk0} facets are fabricated using Cu multilayer deposition at three distinct layer thicknesses on the surface facets of Au truncated ditetragonal nanoprisms (Au DTPs). Au DTPs are shapes enclosed by 12 high-index {310} facets. Facet angle analysis confirms DTP geometry. Elemental mapping analysis shows Cu surface layers are uniformly distributed on the Au {310} facets of the DTPs. The 7 nm Au@Cu DTPs high-index {hk0} facets exhibit a CH4 : CO product ratio of almost 10 : 1 compared to a 1 : 1 ratio for the reference 7 nm Au@Cu nanoparticles (NPs). Operando Fourier transform infrared spectroscopy spectra disclose reactive adsorbed *CO as the main intermediate, whereas CO stripping experiments reveal the high-index facets enhance the *CO formation followed by rapid desorption or hydrogenation.  相似文献   

3.
采用溶剂热-煅烧法,通过F掺杂合成了一系列具有高暴露(001)晶面的BiOCl纳米片。应用X射线衍射、N_2物理吸附、扫描电子显微镜、透射电子显微镜、X射线光电子能谱、紫外可见漫反射光谱、红外光谱和光电流响应等物理化学方法对合成的样品进行了表征分析。结果表明,掺杂适量的F可以促进BiOCl(110)优势晶面的生长,形成高暴露(001)晶面,同时可抑制BiOCl晶粒的长大,并增大BiOCl纳米片的比表面积和提高其表面羟基的数量。在模拟太阳光下,光催化降解偶氮染料罗丹明B结果表明,F掺杂能显著提高BiOCl对罗丹明B的光催化降解活性。其中F_(1.0)-BiOCl对罗丹明B的降解速率是BiOCl的2.67倍。此外,F_(1.0)-BiOCl对酸性橙Ⅱ的光催化降解活性是商业光催化剂P25(TiO_2)的1.24倍。F掺杂引起光催化活性大幅提升的主要原因是,高暴露(001)晶面的生成提升了BiOCl纳米片对染料的吸附性能,同时加快了光生e~-和h~+分离。  相似文献   

4.
Anatase films exhibiting ~100% (001) reactive facets at the surface were grown hydrothermally on gold substrate from a homogeneous solution of TiF(4) and NaF. In addition to NaF, it was found that TiO(2) films with very similar properties could be prepared with the fluoride salts LiF, CsF, HF, NH(4)F, and N(CH(2)CH(3))(4)F. The polycrystalline anatase films are continuous, approximately 1 μm thick, and evenly coat the substrate. The surface grain size is ~400 nm. Grazing angle XRD measurements show that the films exhibit a high degree of preferred orientation with the c-axis normal to the substrate surface. SEM images reveal that the grains span the thickness of the films. Annealing the films at 500 °C removes fluorine and causes crystallites within the grains to restructure as shown by SEM, XRD, and Raman spectroscopy. Supported anatase films grown from this one-pot method may serve as oxidative photocatalysts and electrodes for photoelectrochemical applications such as solar cells and hydrogen evolution.  相似文献   

5.
6.
采用非水体系溶剂热法制备了(001)面暴露的锐钛矿相F/TiO2纳米光催化剂.结果表明,F的掺杂对TiO2纳米单晶的形成影响很大.一方面,F离子作为晶面导向剂稳定(001)晶面,形成(001)面暴露的锐钛矿相TiO2;另一方面,F离子也起到稳定剂作用,抑制纳米粒子的快速生长.以光催化降解甲基橙为模型反应比较了不同F/T...  相似文献   

7.
肖翅  田娜  周志有  孙世刚 《电化学》2020,26(1):61-72
催化剂的性能与其表面结构及组成密切相关,高指数晶面纳米晶的表面含有高密度的台阶原子等活性位点而表现出较高的催化活性. 本文综述了电化学方波电位方法用于Pt、Pd、Rh等贵金属高指数晶面结构纳米晶催化剂的制备、形成机理及其电催化性能的研究. 针对贵金属利用率问题,还着重介绍了具有较高质量活性的小粒径Pt二十四面体的制备. 在此基础上,还介绍了电化学方波电位方法用于低共熔溶剂中制备高指数晶面纳米晶,以及高指数晶面纳米催化剂的表面修饰及应用;最后对高指数晶面纳米催化剂的发展做出了展望.  相似文献   

8.
This study investigated the positive effect of surface modification with ozone on the photocatalytic performance of anatase TiO2 with dominated (001) facets for toluene degradation. The performance of photocatalyst was tested on a home-made volatile organic compounds degradation system. The ozone modi cation, toluene adsorption and degradation mechanism were established by a combination of various characterization methods, in situ diffuse reflectance infrared fourier transform spectroscopy, and density functional theory calculation. The surface modi cation with ozone can significantly enhance the photocatalytic degradation performance for toluene. The abundant unsaturated coordinated 5c-Ti sites on (001) facets act as the adsorption sites for ozone. The formed Ti-O bonds reacted with H2O to generate a large amount of isolated Ti5c-OH which act as the adsorption sites for toluene, and thus significantly increase the adsorption capacity for toluene. The outstanding photocatalytic performance of ozone-modified TiO2 is due to its high adsorption ability for toluene and the abundant surface hydroxyl groups, which produce very reactive OH radicals under irradiation. Furthermore, the O2 generated via ozone dissociation could combine with the photogenerated electrons to form superoxide radicals which are also conductive to the toluene degradation.  相似文献   

9.
Iodine(III) reagents are used in catalytic one‐pot reactions, first as both oxidants and substrates, then as cross‐coupling partners, to afford chiral polyfunctionalized amines. The strategy relies on an initial catalytic auto C(sp3)?H amination of the iodine(III) oxidant, which delivers an amine‐derived iodine(I) product that is subsequently used in palladium‐catalyzed cross‐couplings to afford a variety of useful building blocks with high yields and excellent stereoselectivities. This study demonstrates the concept of self‐amination of the hypervalent iodine reagents, which increases the value of the aryl moiety.  相似文献   

10.
Au nanoparticles loaded TiO2 hollow microspheres with exposed (001) facets(Au-HTFs) were synthesized through template-free hydrothermal process combined with a chemical reduction role. Au-HTFs displayed excellent photocatalytic activity in catalyzing oxidization reaction in organic pollutant system, which originates from the synergistic effect of the reactive (001) facets and Au nanoparticles with a wide range of absorption in visible region based on localized surface plasmon resonance effect. The unique synergistic effect could largely increase the photocatalytic performance resulting from the improvements of both the visible light aborption and the recombination of electron-hole pairs. Our findings revealed that among Au-HTFs with different Au loading percentages, Au-HTFs with 2%(mass fraction) Au loading possessed the superior photocatalytic activity.  相似文献   

11.
Note from the Editor: According to Robert K. Merton (1988), “Invisible college” is a term used “to designate the informal collectives of scientists interacting in their research on similar problems, these groups being generally limited to a size ‘that can be handled by interpersonal relationships.’ ” Invisible colleges can be highly competitive, even ugly in their priority races, or they can be congenial, even enthusiastically supportive to its members. In the community of organic chemists who studied novel aromatic chemistry in the 1950s–1990s, one man—Tetsuo Nozoe—is largely responsible for bringing together researchers from across the world and setting the tone of brotherhood. Larry Scott, today a senior scholar of that invisible college, warmly shares the spirit of Tetsuo Nozoe with each of us in the following essay. Jeffrey I. Seeman Guest Editor University of Richmond Richmond, Virginia 23173, USA E‐mail: jseeman@richmond.edu  相似文献   

12.
Metal oxides exposing high-index facets are potentially impactful in catalysis and adsorption processes owing to under-coordinated ions and polarities that alter their interfacial properties compared to low-index facets. Here, we report molten-salt syntheses of NiO particles exposing a variety of crystal facets. We show that for a given anion (nitrate or chloride), the alkali cation has a notable impact on the formation of crystals exposing {311}, {611}, {100}, and {111} faces. Based on a parametric analysis of synthesis conditions, we postulate that the crystallization mechanism is governed by the formation of growth units consisting of NiII complexes whose coordination numbers are determined by temperature and the selection of anion (associated to the coordination sphere) and alkali cation (associated with the outer coordination sphere). Notably, our findings reveal that high-index facets are particularly favored in chloride media and are stable under prolonged periods of catalysis and steaming.  相似文献   

13.
In the late 1930s and early 1940s, it was discovered that the substitution on aromatic rings of hydrogen atoms with chlorine yielded a novel chemistry of antimicrobials. However, within a few years, many of these compounds and formulations showed adverse effects, including human toxicity, ecotoxicity, and unwanted environmental persistence and bioaccumulation, quickly leading to regulatory bans and phase-outs. Among these, the triclocarban, a polychlorinated aromatic antimicrobial agent, was employed as a major ingredient of toys, clothing, food packaging materials, food industry floors, medical supplies, and especially of personal care products, such as soaps, toothpaste, and shampoo. Triclocarban has been widely used for over 50 years, but only recently some concerns were raised about its endocrine disruptive properties. In September 2016, the U.S. Food and Drug Administration banned its use in over-the-counter hand and body washes because of its toxicity. The withdrawal of triclocarban has prompted the efforts to search for new antimicrobial compounds and several analogues of triclocarban have also been studied. In this review, an examination of different facets of triclocarban and its analogues will be analyzed.  相似文献   

14.
Anatase TiO2 nanosheets (TiO2 NS) with dominant (001) facets and TiO2 nanoparticles (TiO2 NP) with dominant (101) facets are fabricated by hydrothermal hydrolysis of Ti(OC4H9)4 in the presence and absence of hydrogen fluoride (HF), respectively. Adsorption of N719 onto the as‐prepared samples from ethanol solutions is investigated and discussed. The adsorption kinetic data are modeled using the pseudo‐first‐order, pseudo‐second‐order, and intraparticle diffusion kinetics equations, and indicate that the pseudo‐second‐order kinetic equation and intraparticle diffusion model can better describe the adsorption kinetics. Furthermore, adsorption equilibrium data of N719 on the as‐prepared samples are analyzed by Langmuir and Freundlich models; this suggests that the Langmuir model provides a better correlation of the experimental data. The adsorption capacities (qmax) of N719 on TiO2 NS at various temperatures, determined using the Langmuir equation, are 65.2 (30 °C), 68.2 (40 °C), and 76.6 (50 °C) mg g−1, which are smaller than those on TiO2 NP, 92.4 (30 °C), 100.0 (40 °C), and 108.2 (50 °C) mg g−1, respectively. The larger adsorption capacities of N719 for TiO2 NP versus NS are attributed to its higher specific surface areas. However, the specific adsorption capacities (qmax/SBET) at various temperatures are 1.5 (30 °C), 1.6 (40 °C), and 1.7 (50 °C) mg m−2 for TiO2 NS, which are otherwise higher than those for NP, 0.9 (30 °C), 1.0 (40 °C), and 1.1 (50 °C) mg m−2, respectively. The larger specific adsorption capacities of N719 for TiO2 NS versus NP are because the (001) surface is more reactive for dissociative adsorption of reactant molecules compared with (101) facets. Notably, the qmax and qmax/SBET for both TiO2 samples increase with increasing temperature, suggesting that adsorption of N719 on the TiO2 surface is an endothermic process, which is further confirmed by the calculated thermodynamic parameters including free energy, enthalpy, and entropy of adsorption process. The present work will provide a new understanding on the adsorption process and mechanism of N719 molecules onto TiO2 NS and NP, and this should be of great importance for enhancing the performance of dye‐sensitized solar cells.  相似文献   

15.
The catalytic oxidation of CO on transition metals, such as Pt, is commonly viewed as a sharp transition from the CO-inhibited surface to the active metal, covered with O. However, we find that minor amounts of O are present in the CO-poisoned layer that explain why, surprisingly, CO desorbs at stepped and flat Pt crystal planes at once, regardless of the reaction conditions. Using near-ambient pressure X-ray photoemission and a curved Pt(111) crystal we probe the chemical composition at surfaces with variable step density during the CO oxidation reaction. Analysis of C and O core levels across the curved crystal reveals that, right before light-off, subsurface O builds up within (111) terraces. This is key to trigger the simultaneous ignition of the catalytic reaction at different Pt surfaces: a CO-Pt-O complex is formed that equals the CO chemisorption energy at terraces and steps, leading to the abrupt desorption of poisoning CO from all crystal facets at the same temperature.  相似文献   

16.
17.
To produce efficient ORR catalysts with low Pt content, PtNi porous films (PFs) with sufficiently exposed Pt active sites were designed by an approach combining electrochemical bottom‐up (electrodeposition) and top‐down (anodization) processes. The dynamic oxygen‐bubble template (DOBT) programmably controlled by a square‐wave potential was used to tune the catalyst morphology and expose Pt active facets in PtNi PFs. Surface‐bounded species, such as hydroxyl (OH*, *=surface site) on the exposed PtNi PFs surfaces were adjusted by the applied anodic voltage, further affecting the dynamic oxygen (O2) bubbles adsorption on Pt. As a result, PtNi PF with enriched Pt(111) facets (denoted as Pt3.5 %Ni PF) was obtained, showing prominent ORR activity with an onset potential of 0.92 V (vs. RHE) at an ultra‐low Pt loading (0.015 mg cm?2).  相似文献   

18.
Noble‐metal nanocrystals (NCs) show excellent catalytic performance for many important electrocatalysis reactions. The crystallographic properties of the facets by which the NCs are bound, closely associated with the shape of the NCs, have a profound influence on the electrocatalytic function of the NCs. To develop an efficient strategy for the synthesis of NCs with controlled facets as well as compositions, understanding of the growth mechanism of the NCs and their interaction with the chemical species involved in NC synthesis is quite important. Furthermore, understanding the facet‐dependent catalytic properties of noble‐metal NCs and the corresponding mechanisms for various electrocatalysis reactions will allow for the rational design of robust electrocatalysts. In this review, we summarize recently developed synthesis strategies for the preparation of mono‐ and bimetallic noble‐metal NCs by classifying them by the type of facets through which they are enclosed and discuss the electrocatalytic applications of noble‐metal NCs with controlled facets, especially for reactions associated with fuel‐cell applications, such as the oxygen reduction reaction and fuel (methanol, ethanol, and formic acid) oxidation reactions.  相似文献   

19.
Ultrathin two‐dimensional (2D) crystalline materials show high specific surface area (SA) of high energy (HE) facets, imparting a significant improvement in their performances. Herein we report a novel route to synthesize TiO2 nanofilms (NFs) with atomic thickness (<2.0 nm) through a solvothermal reaction mediated by the hydrogen‐bonding networks constructed by hydroquinone (HQ). The resultant TiO2 NFs have nearly 100 % exposed (001) facets and give an extremely high SA up to 487 m2 g?1. The synergistic effect of HQ and choline chloride plays a vital role in the formation of TiO2 NFs and in the exposure of HE (001) facets. Because of its ultrathin feature and exposed (001) facet, the N2‐annealled TiO2 NFs showed fast kinetics of lithium insertion/extraction, demonstrating foreseeable applications in the energy storage.  相似文献   

20.
贵金属纳米晶在电催化等领域具有广泛应用. 其催化活性往往与纳米晶体的表面结构直接相关,而催化剂的贵金属原子利用率与比表面积密切相关. 因小尺寸纳米晶难以保留特定的晶面,而具有特定表面的纳米晶通常结晶成尺寸较大、比表面积比较小的晶体,调控纳米晶的尺寸和表面结构两种策略似乎相互矛盾. 如何可控合成同时具有特定表面结构和大比表面积的贵金属纳米晶具有重要的意义. 本综述从形貌调控角度详细介绍提高贵金属纳米晶原子利用率的方法策略;总结调控单贵金属及其合金同时具有特定晶面和大比表面积的研究现状;最后,对纳米晶的形貌调控领域未来的发展趋势提出展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号