首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Boron–nitrogen dative bonds provide a suitable motif for reversible, yet strong and directed interactions, leading to the highly efficient self‐assembly of small organic building blocks into supramolecular cage structures. A bipyramidal [2+3] assembly, as the first example of a supramolecular cage mediated by B?N dative bonds that exists as a discrete species in solution, is quantitatively obtained from a tribenzotriquinacene‐based trisboronate ester and 1,4‐diazabicyclo[2.2.2]octane. Thermodynamic equilibria of cage formation are investigated by isothermal titration calorimetry and fully reversible cage opening can be observed at elevated temperatures.  相似文献   

2.
The preparation of a series of imidazolium salts bearing N‐allyl substituents, and a range of substituents on the second nitrogen atom that have varying electronic and steric properties, is reported. The ligands have been coordinated to a copper(I) centre and the resulting copper(I)–NHC (NHC=N‐heterocyclic carbene) complexes have been thoroughly examined, both in solution and in the solid‐state. The solid‐state structures are highly diverse and exhibit a range of unusual geometries and cuprophilic interactions. The first structurally characterised copper(I)–NHC complex containing a copper(I)–alkene interaction is reported. An N‐pyridyl substituent, which forms a dative bond with the copper(I) centre, stabilises an interaction between the metal centre and the allyl substituent of a neighbouring ligand, to form a 1D coordination polymer. The stabilisation is attributed to the pyridyl substituent increasing the electron density at the copper(I) centre, and thus enhancing the metal(d)‐to‐alkene(π*) back‐bonding. In addition, components other than charge transfer appear to have a role in copper(I)–alkene stabilisation because further increases in the Lewis basicity of the ligand disfavours copper(I)–alkene binding.  相似文献   

3.
The anilic acids, 2,5-dihydroxy-1,4-benzoquinone (1a), 2,5-dibromo-3,6-dihydroxy-1,4-benzoquinone (bromanilic acid; 1b), 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone (chloranilic acid; 1c), and 2,5-dicyano-3,6-dihydroxy-1,4-benzoquinone (cyananilic acid; 1d), were cocrystallized with rigid organic ligands containing two pyridine rings, 2,4-bipyridine (2a), 4,4'-bipyridine (2b), 1,2-bis(2-pyridyl)ethylene (3a), 1,2-bis(4-pyridyl)ethylene (3b), 2,2'-dipyridylacetylene (4a), 3,3'-dipyridylacetylene (4b), and 4,4'-dipyridylacetylene (4c). Fourteen complexes 5-18 were obtained as single crystals, and their crystal structures were successfully determined by X-ray analysis. All complexes except those with 2a are 1:1 and are composed of an infinite linear or zigzag tape structure, the formation of which is ascribed to intermolecular O-H...N, N(+)-H...O, or N(+)-H...O(-) hydrogen bonds or a combination of these between the anilic acids and the dipyridyl compounds. In the complexes 5 and 6, no infinite tape structure is observed although the molecular units connected by a similar hydrogen-bonding pattern are formed. For the 1:1 complexes, we have found two types of stacking arrangements, segregated stacks (7, 9, 12-15, 18) and alternated ones (8, 10, 11, 16, 17). In the complexes of 1c with the series of dipyridylacetylenes 4 (14, 15, 17), the neutral, dication, and monocaction states are formed depending on the nitrogen positions, which can be attributed to the different basicity of the pyridyl groups.  相似文献   

4.
Two novel, stable PdII complexes, compounds 3 and 4 , of two 3‐hydroxypyridine‐2‐carbaldehyde thiosemicarbazones, 1 and 2 , resp., were prepared from Li2PdCl4. The single‐crystal X‐ray structure of complex 3 (= [Pd( 2 )Cl]) shows that the ligand monoanion coordinates in a planar conformation to the metal via the pyridyl N‐, the imine N‐, and the thiolato S‐atoms. Intermolecular H‐bonds, π–π, and CH ? ? ? π interactions lead to a two‐dimensional supramolecular assembly. The electronic, IR, UV/VIS, and NMR spectroscopic data of the two complexes are reported, together with their electrochemical properties. A sophisticated experimental procedure was used to determine the multiple dissociation constants of the ligands 1 and 2 by UV/VIS titration.  相似文献   

5.
A novel coordination polymer, [Ag4ppdc)(H2bpdc)(Hbpdc)2] (bpdc = 2,2′‐bipyridyl‐3,3′‐dicarboxylate), was hydrothermally synthesized at 403 K and structurally characterized by single crystal X‐ray diffraction analysis. The compound crystalizes in the monoclinic space group C2/c with a=1.9516(4) nm, b=1.9503(4) nm. c=1.2566(3) nm, and β=112.48(3)°. In the two‐dimensional crystal structure, AgI center is coordinated, in a scarce coordination environment, double‐capped tetrahedron, by one bpdc ligand to form N‐Ag‐N chelate bond via two pyridyl N atoms, and other two bpdc ligands to form two O‐Ag‐O chelate bonds, respectively, via two carboxyl O atoms. The bpdc ligands are present in one non‐protonated form, bpdc, and two protonated forms, Hbpdc and H2bpdc, which all act as μ3‐ligand in a hexadentate fashion (N, N′; O, O′; O, O′) to coordinate with three Ag centers, respectively, through the three chelate bonds. This coordinated fashion of bpdc ligand is first found in the title compound. W‐Us‐NIR reflectance spectroscopy study revealed insulator nature for the crystal with an optical energy gap of 3.1 eV.  相似文献   

6.
In the title compound, [Mn(C8H7O2)2(C12H9N3)], the manganese(II) centre is surrounded by three bidentate chelating ligands, namely, one 2‐(2‐pyridyl)benzimidazole ligand [Mn—N = 2.1954 (13) and 2.2595 (14) Å] and two p‐toluate ligands [Mn—O = 2.1559 (13)–2.2748 (14) Å]. It displays a severely distorted octahedral geometry, with cis angles ranging from 58.87 (4) to 106.49 (5)°. Intermolecular C—H...O hydrogen bonds between the p‐toluate ligands link the molecules into infinite chains, and every two neighbouring chains are further coupled by N—H...O and C—H...O hydrogen bonds between the 2‐(2‐pyridyl)benzimidazole and p‐toluate ligands, leading to an infinite ribbon‐like double‐chain packing mode. The complete solid‐state structure can be described as a three‐dimensional supramolecular framework, stabilized by these intermolecular hydrogen‐bonding interactions and possible C—H...π interactions, as well as stacking interactions involving the 2‐(2‐pyridyl)benzimidazole ligands.  相似文献   

7.
o-(Pyrrolidinylmethyl)phenylboronic acid (4) and its complexes with bifunctional substrates such as catechol, alpha-hydroxyisobutyric acid, and hydrobenzoin have been studied in detail by X-ray crystallography, (11)B NMR, and computational analysis. The N-B interactions in analogous boronic acids and esters have been extensively cited in molecular recognition and chemosensing literature. The focal point of this study was to determine the factors that are pertinent to the formation of an intramolecular N-B dative bond. Our structural study predicts that the formation of an N-B dative bond, and/or solvent insertion to afford a tetrahedral boronate anion, depends on the solvent and the complexing substrate present. Specifically, from (11)B NMR studies, complexation of 4 with electron-withdrawing and/or vicinally bifunctionalized substrates promotes both the formation of N-B dative bonds and the solvation of sp(2) boron to a tetrahedral sp(3) boronate. In the solid state, the presence of an N-B dative bond in the complex of 4 and catechol (7) depends on the solvent from which it crystallizes. From chloroform, an N-B bond was observed, whereas from methanol, a methoxylated boronate was formed, where the methoxy group is hydrogen-bonded with the neighboring tertiary ammonium ion. The structural optimization of compounds 4 and 7 using density functional theory in a simulated water continuum also predicts that complexation of 4 and catechol promotes either the formation of an N-B bond or solvolysis if 1 equiv of water is present. The conclusion from this study will help in the design of future chemosensing technologies based on o-(N,N-dialkylaminomethyl)arylboronate scaffolds that are targeting physiologically important substances such as saccharides, alpha-hydroxycarboxylates, and catecholamines.  相似文献   

8.
A unique 3‐D PbII coordination polymer containing ligands 1,2‐bis(4‐pyridyl)ethylene (bpe) and 3‐sulfobenzoate (3‐sb), [Pb(3‐sb)(bpe)0.5]n ( 1 ) has been synthesized by hydrothermal reaction and characterized by elemental analysis, IR, TGA, 1H NMR, powder X‐ray analysis, and fluorescent spectrum. The single‐crystal X‐ray analysis shows that eight coordination bonds can be divided as five primary bonds and three secondary bonds. The secondary bonds largely enhance the solid stability and provide a high‐dimensional network assembly. The complex also displays strong fluorescent property.  相似文献   

9.
The title compound, [Mn(NCS)2(C18H12N6)2(CH4O)2], con­tains a centrosymmetric octahedral MnII centre and three pairs of trans‐coordinating ligands. It is the first example of a mononuclear metal complex with the 2,4,6‐tri(4‐pyridyl)‐1,3,5‐triazine (tpt) ligand. Intermolecular π–π stacking of the planar tpt ligands, as well as hydrogen bonds between pyridyl N and methanol H atoms, results in the formation of a three‐dimensional network.  相似文献   

10.
从含4,4'-二吡啶胺结构单元的双(二吡啶胺) 桥联配体出发,采用溶剂热法合成了两个结构新颖的配位聚合物:[CdL1Br2]n?7.5nH2O (L1 = N,N,N′,N′-四(4-吡啶)-1,4-苯二胺) (1)和[Cu2L2(μ1,1,3-SCN)2]n?nMeOH (L2 = N,N-二(2-吡啶)-N',N'-二(4-吡啶)-1,4-苯二胺) (2),对它们进行了元素分析、红外光谱等表征,并用X-射线单晶衍射测定了其晶体结构。单晶测试结果显示,配合物1中配体L1的四个吡啶N原子均参与配位,桥联了4个Cd原子,每个Cd原子与四个吡啶 N 原子和两个溴配位,形成六配位的八面体构型。通过这些配位作用,最终形成包含 Kagome 结构的三维超分子网络。配合物2 是由一维柱状 {Cu(SCN)}n 链通过 L2 桥联生成的二维结构。有趣的是,L2中具有螯合能力的2,2'-二吡啶胺单元并未参与配位,只有4,4'-二吡啶胺单元中的两个吡啶N原子分别与一个 Cu(I) 配位,连接了相邻两条平行的{Cu(SCN)}n 链,生成二维结构。  相似文献   

11.
We report a novel approach for fabrication of multifunctional conjugated polymers, namely poly(p‐phenylene)s (PPPs) possessing polypeptide (poly‐l ‐lysine, PLL) and hydrophilic poly(ethylene glycol) (PEG) side chains. The approach is comprised of the combination of Suzuki coupling and in situ N‐carboxyanhydride (NCA) ring‐opening polymerization (ROP) processes. First, polypeptide macromonomer was prepared by ROP of the corresponding NCA precursor using (2,5‐dibromophenyl)methanamine as an initiator. Suzuki coupling reaction of the obtained polypeptide and PEG macromonomers both having dibromobenzene end functionality using 1,4‐benzenediboronic acid as the coupling partner in the presence of palladium catalyst gave the desired polymer. A different sequence of the same procedure was also employed to yield polymer with essentially identical structure. In the reverse sequence mode, low molar mass monomer (2,5‐dibromophenyl)methanamine, and PEG macromonomer were coupled with 1,4‐benzenediboronic acid in a similar way followed by ROP of the L‐Lysine NCA precursor through the primary amino groups of the resulting polyphenylene. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1785–1793  相似文献   

12.
In the complex diaquatetranitrato[5‐(pyridinium‐4‐yl)‐10,15,20‐tri‐4‐pyridylporphyrin]lanthanum(III) 1,2‐dichlorobenzene trisolvate, [La(NO3)4(C40H27N8)(H2O)2]·3C6H4Cl2, the lanthanum ion is coordinated to one of the peripheral pyridyl substituents of the porphyrin entity. Units of the complex are interlinked to one another in three dimensions by a network of O—H...N, O—H...O and N—H...O hydrogen bonds between the water ligands, nitrate ions, and pyridyl and pyridinium groups of adjacent species. This is the first structural report of an exocyclic complex of the tetrapyridylporphyrin ligand with any lanthanide ion and its self‐assembly into a three‐dimensional architecture sustained by hydrogen bonds.  相似文献   

13.
The synthesis, spectroscopic, electrochemical and photophysical characterization of a series of dinuclear ruthenium(II) complexes of the type [(bpy)2Ru(NnN)2RuCl(bpy)2](PF6)3, where NnN = 4,4′‐bipyridyl (N0N), 1,2‐bis(4‐pyridyl)ethylene (NEN), 1,2‐bis(4‐pyridyl)ethane (N2N), and 4,4′‐trimethylenedipyridine (N3N) are reported. The photophysical and electrochemical properties are discussed with particular emphasis on the ability of the bridging ligands to support intercomponent interaction.  相似文献   

14.
The reactions of methylenediisophthalic acid (H4L) and N‐auxiliary ligands (1,2‐bis(4‐pyridyl)ethylene, 1,2‐bis(4‐pyridyl)ethane) with transition‐metal centers (Co2+/Mn2+) have given rise to four unprecedented polythreading coordination polymers. Single‐crystal X‐ray diffraction analyses revealed that the compounds can be described as 3D2??2[1D2+]+2D6? for 1 , 3D4??1D2++1D6? for 2 , and 2D4??0D2++2[1D3?] for 3 and 4 . All the polymers are formed through the assembly of two kinds of motifs with opposite charges. Noncentrosymmetric structures and multifunctionality in 2 – 4 are established by varying ligands and metal centers. Spontaneous resolution upon crystallization occurred in compounds 3 and 4 in the absence of any chiral source. The enantiomers of 3 and 4 consist of three chiral building blocks of L4?/HL3? and Mn2+ centers. In the solid state, polar compounds 2 – 4 exhibit nonlinear‐optic (NLO) and ferroelectric properties at room temperature. The assembly of two kinds of motifs with opposite charges provides a useful method for the preparation of multifunctional compounds.  相似文献   

15.
Electrochemical oxidation of cadmium in an acetonitrile solution of N‐2‐pyridyl‐sulfonamides (HL) afforded cadmium coordination compounds of composition [CdL2]. Heteroleptic complexes of composition [CdL2L′] (L′ = 2, 2′‐bipyridine or 1, 10‐phenanthroline) were obtained when the coligand L′ was added to the electrolytic phase. The crystal structures of several compounds have been determined by X‐ray diffraction. In all cases the cadmium atom is hexacoordinated, but the coordinative behaviour of the N‐2‐pyridyl‐sulfonamide ligand depends on the location of the substituents in the pyridyl ring. When the substituent is in position 3, the ligands act as N, O‐donors. In all other cases, the ligands act as N, N′‐bidentate systems.  相似文献   

16.
Porous coordination polymers constructed from Zn2+ and isophthalate with linear bipyridyl‐type ligands were synthesized. [Zn(ip)(bpb)]n (CID‐21; ip=isophthalate, bpb=1,4‐bis(4‐pyridyl)benzene), [Zn(ip)(bpt)]n (CID‐22; bpt=3,6‐bis(4‐pyridyl)‐1,2,4,5‐tetrazine), and [Zn(ip)(bpa)]n (CID‐23; bpa=1,4‐bis(4‐pyridyl)acetylene) all have interdigitated structures of layers and similar void volumes (≈27 %). In these compounds, 1D bottleneck‐type channels run along the perpendicular direction of the layer stacking and their properties are strongly dominated by the dipyridyl linker ligands. Because of the difference in packing of 2D layers, CID‐21 and CID‐22 have relatively rigid porous structures, whereas CID‐23 has greater flexibility, as indicated by the results of powder X‐ray diffraction studies. The micropores of CID‐22 surrounded by tetrazine moieties adsorb polar molecules, such as methanol and water. The higher affinity of CID‐22 for water than CID‐21 is supported by a theoretical study. The 1D channel of CID‐23 is wider than that of the other two compounds, which enables the incorporation of aromatic molecules. This is because the shape of the bpa linker ligand generates a wider pore diameter (8.6 Å). Only CID‐23 can adsorb a benzene molecule and the isotherm of benzene has a gate‐opening‐type profile. This offers proof of the guest accommodation process through large structural transformation from a nonporous to a porous structure. The flexibility and restricted pore space of CID‐23, at 298 K, allows only benzene, but not cyclohexane, to enter the channels. The porous structure exhibits clear selectivity for these similar guests. The incorporation of an elongated dipyridyl linker ligand in the 2D coordination layers provides a strategy for the design of microporous compounds with different flexibilities, microporous environments, and separation abilities.  相似文献   

17.
The 1:1 complexes N,N′‐bis(2‐pyridyl)­benzene‐1,4‐di­amine–anilic acid (2,5‐di­hydroxy‐1,4‐benzo­quinone) (1/1), C16H14N4·C6H4O4, (I), and N,N′‐bis(2‐pyridyl)­bi­phenyl‐4,4′‐di­amine–anilic acid (1/1), C22H18N4·C6H4O4, (II), have been prepared and their solid‐state structures investigated. The component mol­ecules of these complexes are connected via conventional N—H?O and O—H?N hydrogen bonds, leading to the formation of an infinite one‐dimensional network generated by the cyclic motif R(9). The anilic acid molecules in both crystal structures lie around inversion centres and the observed bond lengths are typical for the neutral mol­ecule. Nevertheless, the pyridine C—N—C angles [120.9 (2) and 120.13 (17)° for complexes (I) and (II), respectively] point to a partial H‐atom transfer from anilic aicd to the bispyridyl­amine, and hence to H‐atom disorder in the OHN bridge. The bispyridyl­amine mol­ecules of (I) and (II) also lie around inversion centres and exhibit disorder of their central phenyl rings over two positions.  相似文献   

18.
The syntheses, structures and properties of the complexes [CdBr2( L )2·4H2O]n [ L = 2,6‐dimethyl‐3,5‐dicyano‐4‐(4‐pyridyl)‐1,4‐dihydropyridine], 1 and [Cd(SCN)2( L )2(H2O)]n, 2 , are reported. In polymeric complexes 1 — 2 , the L ligands bridge the metal centers through the pyrimidyl and cyano nitrogen atoms forming 1‐D double‐stranded chain and zigzag chain, respectively. The L ligands in complex 1 act as κ1, κ1‐bidentate bridging ligand, whereas the L ligands in complex 2 act as κ1‐monodentae and κ1, κ1‐bidentate bridging ligand. The molecules of these complexes are interlinked through various weak interactions that form the packed structure. All the complexes exhibit emissions which may be tentatively assigned as intraligand (IL) π→π* transitions.  相似文献   

19.
Although a multitude of studies have explored the coordination chemistry of classical tripodal ligands containing a range of main‐group bridgehead atoms or groups, it is not clear how periodic trends affect ligand character and reactivity within a single ligand family. A case in point is the extensive family of neutral tris‐2‐pyridyl ligands E(2‐py)3 (E=C?R, N, P), which are closely related to archetypal tris‐pyrazolyl borates. With the 6‐methyl substituted ligands E(6‐Me‐2‐py)3 (E=As, Sb, Bi) in hand, the effects of bridgehead modification alone on descending a single group in the periodic table were assessed. The primary influence on coordination behaviour is the increasing Lewis acidity (electropositivity) of the bridgehead atom as Group 15 is descended, which not only modulates the electron density on the pyridyl donor groups but also introduces the potential for anion selective coordination behaviour.  相似文献   

20.
This study targets the construction of porphyrin assemblies directed by halogen bonds, by utilizing a series of purposely synthesized Sn(axial ligand)2–(5,10,15,20‐tetraarylporphyrin) [Sn(L)2‐TArP] complexes as building units. The porphyrin moiety and the axial ligands in these compounds contain different combinations of complimentary molecular recognition functions. The former bears p‐iodophenyl, p‐bromophenyl, 4′‐pyridyl, or 3′‐pyridyl substituents at the meso positions of the porphyrin ring. The latter comprises either a carboxylate or hydroxy anchor for attachment to the porphyrin‐inserted tin ion and a pyridyl‐, benzotriazole‐, or halophenyl‐type aromatic residue as the potential binding site. The various complexes were structurally analyzed by single‐crystal X‐ray diffraction, accompanied by computational modeling evaluations. Halogen‐bonding interactions between the lateral aryl substituents of one unit of the porphyrin complex and the axial ligands of neighboring moieties was successfully expressed in several of the resulting samples. Their occurrence is affected by structural (for example, specific geometry of the six‐coordinate complexes) and electronic effects (for example, charge densities and electrostatic potentials). The shortest intermolecular I???N halogen‐bonding distance of 2.991 Å was observed between iodophenyl (porphyrin) and benzotriazole (axial ligand) moieties. Manifestation of halogen bonds in these relatively bulky compounds without further activation of the halophenyl donor groups by electron‐withdrawing substituents is particularly remarkable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号