首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Turbulent cavitating flow computations need to address both cavitation and turbulence modelling issues. A recently developed interfacial dynamics‐based cavitation model (IDCM) incorporates the interfacial transport into the computational modelling of cavitation dynamics. For time‐dependent flows, it is known that the engineering turbulence closure such as the original kε model often over‐predicts the eddy viscosity values reducing the unsteadiness. A recently proposed filter‐based modification has shown that it can effectively modulate the eddy viscosity, rendering better simulation capabilities for time‐dependent flow computations in term of the unsteady characteristics. In the present study, the IDCM along with the filter‐based kε turbulence model is adopted to simulate 2‐D cavitating flows over the Clark‐Y airfoil. The chord Reynolds number is Re=7.0 × 105. Two angles‐of‐attack of 5 and 8° associated with several cavitation numbers covering different flow regimes are conducted. The simulation results are assessed with the experimental data including lift, drag and velocity profiles. The interplay between cavitation and turbulence models reveals substantial differences in time‐dependent flow results even though the time‐averaged characteristics are similar. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
This paper reports the outcome of applying two different low‐Reynolds‐number eddy‐viscosity models to resolve the complex three‐dimensional motion that arises in turbulent flows in ducts with 90° bends. For the modelling of turbulence, the Launder and Sharma low‐Re k–ε model and a recently produced variant of the cubic non‐linear low‐Re k–ε model have been employed. In this paper, developing turbulent flow through two different 90° bends is examined: a square bend, and a rectangular bend with an aspect ratio of 6. The numerical results indicate that for the bend of square cross‐section the curvature induces a strong secondary flow, while for the rectangular cross‐section the secondary motion is confined to the corner regions. For both curved ducts, the secondary motion persists downstream of the bend and eventually slowly disappears. For the bend of square cross‐section, comparisons indicate that both turbulence models can produce reasonable predictions. For the bend of rectangular cross‐section, for which a wider range of data is available, while both turbulence models produce satisfactory predictions of the mean flow field, the non‐linear k–ε model returns superior predictions of the turbulence field and also of the pressure and friction coefficients. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a finite difference technique for solving incompressible turbulent free surface fluid flow problems. The closure of the time‐averaged Navier–Stokes equations is achieved by using the two‐equation eddy‐viscosity model: the high‐Reynolds k–ε (standard) model, with a time scale proposed by Durbin; and a low‐Reynolds number form of the standard k–ε model, similar to that proposed by Yang and Shih. In order to achieve an accurate discretization of the non‐linear terms, a second/third‐order upwinding technique is adopted. The computational method is validated by applying it to the flat plate boundary layer problem and to impinging jet flows. The method is then applied to a turbulent planar jet flow beneath and parallel to a free surface. Computations show that the high‐Reynolds k–ε model yields favourable predictions both of the zero‐pressure‐gradient turbulent boundary layer on a flat plate and jet impingement flows. However, the results using the low‐Reynolds number form of the k–ε model are somewhat unsatisfactory. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
M = 2.25 shock‐wave/turbulent‐boundary‐layer interactions over a compression ramp for several angles (8, 13 and 18°) at Reynolds‐number Re=7 × 103 were simulated with three low‐Reynolds second‐moment closures and a linear low‐Reynolds standard k–ε model. A detailed assessment of the turbulence closures by comparison with both mean‐flow and turbulent experimental quantities is presented. The Reynolds‐stress model which is wall‐topology free and which uses an optimized redistribution closure, is in good agreement with experimental data both for wall‐pressure and mean‐velocity profiles. Detailed analysis of three components of the Reynolds‐stress tensor (comparison with measurements and transport‐equation budgets) provides a critical evaluation of full Reynolds‐stress models for the separated supersonic compression ramp. The discrepancy observed in the shock‐wave foot region, between computations and measurements for the Reynolds‐stresses profiles, could be explained by considering the experimental shock‐wave oscillation and directions for future modelling work are indicated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents two‐dimensional and unsteady RANS computations of time dependent, periodic, turbulent flow around a square block. Two turbulence models are used: the Launder–Sharma low‐Reynolds number k–ε model and a non‐linear extension sensitive to the anisotropy of turbulence. The Reynolds number based on the free stream velocity and obstacle side is Re=2.2×104. The present numerical results have been obtained using a finite volume code that solves the governing equations in a vertical plane, located at the lateral mid‐point of the channel. The pressure field is obtained with the SIMPLE algorithm. A bounded version of the third‐order QUICK scheme is used for the convective terms. Comparisons of the numerical results with the experimental data indicate that a preliminary steady solution of the governing equations using the linear k–ε does not lead to correct flow field predictions in the wake region downstream of the square cylinder. Consequently, the time derivatives of dependent variables are included in the transport equations and are discretized using the second‐order Crank–Nicolson scheme. The unsteady computations using the linear and non‐linear k–ε models significantly improve the velocity field predictions. However, the linear k–ε shows a number of predictive deficiencies, even in unsteady flow computations, especially in the prediction of the turbulence field. The introduction of a non‐linear k–ε model brings the two‐dimensional unsteady predictions of the time‐averaged velocity and turbulence fields and also the predicted values of the global parameters such as the Strouhal number and the drag coefficient to close agreement with the data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Mean‐flow three‐dimensionalities affect both the turbulence level and the coherent flow structures in wall‐bounded shear flows. A tailor‐made flow configuration was designed to enable a thorough investigation of moderately and severely skewed channel flows. A unidirectional shear‐driven plane Couette flow was skewed by means of an imposed spanwise pressure gradient. Three different cases with 8°, 34°and 52°skewing were simulated numerically and the results compared with data from a purely two‐dimensional plane Couette flow. The resulting three‐dimensional flow field became statistically stationary and homogeneous in the streamwise and spanwise directions while the mean velocity vector V and the mean vorticity vector Ω remained parallel with the walls. Mean flow profiles were presented together with all components of the Reynolds stress tensor. The mean shear rate in the core region gradually increased with increasing skewing whereas the velocity fluctuations were enhanced in the spanwise direction and reduced in the streamwise direction. The Reynolds shear stress is known to be closely related to the coherent flow structures in the near‐wall region. The instantaneous and ensemble‐averaged flow structures were turned by the skewed mean flow. We demonstrated for the medium‐skewed case that the coherent structures should be examined in a coordinate system aligned with V to enable a sound interpretation of 3D effects. The conventional symmetry between Case 1 and Case 2 vortices was broken and Case 1 vortices turned out to be stronger than Case 2. This observation is in conflict with the common understanding on the basis of the spanwise (secondary) mean shear rate. A refined model was proposed to interpret the structure modifications in three‐dimensional wall‐flows. What matters is the orientation of the mean vorticity vector Ω relative to the vortex vorticity vector ω v, that is, the sign of Ω · ω v. In the present situation, Ω · ω v > 0 for the Case 1 vortices causing a strengthening relative to the Case 2 vortices. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
An effective way of using computational fluid dynamics (CFD) to simulate flow about a rotating device—for example, a wind or marine turbine—is to embed a rotating region of cells inside a larger, stationary domain, with a sliding interface between. This paper describes a simple but effective method for implementing this as an internal Dirichlet boundary condition, with interfacial values obtained by interpolation from halo nodes. The method is tested in two finite‐volume codes: one using block‐structured meshes and the other unstructured meshes. Validation is performed for flow around simple, isolated, rotating shapes (cylinder, sphere and cube), comparing, where possible, with experiment and the alternative CFD approach of fixed grid with moving walls. Flow variables are shown to vary smoothly across the sliding interface. Simulations of a tidal‐stream turbine, including both rotor and support, are then performed and compared with towing‐tank experiments. Comparison between CFD and experiment is made for thrust and power coefficients as a function of tip‐speed ratio (TSR) using Reynolds‐averaged Navier–Stokes turbulence models and large‐eddy simulation (LES). Performance of most models is good near the optimal TSR, but simulations underestimate mean thrust and power coefficients in off‐design conditions, with the standard k? turbulence model performing noticeably worse than shear stress transport kω and Reynolds‐stress‐transport closures. LES gave good predictions of mean load coefficients and vital information about wake structures but at substantial computational cost. Grid‐sensitivity studies suggest that Reynolds‐averaged Navier–Stokes models give acceptable predictions of mean power and thrust coefficients on a single device using a mesh of about 4 million cells. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A compressible, multiphase, one‐fluid Reynolds‐averaged Navier–Stokes solver has been developed to study turbulent cavitating flows. The interplay between turbulence and cavitation regarding the unsteadiness and structure of the flow is complex and not well understood. This constitutes a critical point to accurately simulate the dynamic behavior of sheet cavities. In the present study, different formulations based on a k ? ? transport‐equation model are investigated and a scale‐adaptive formulation is proposed. Numerical results are given for a Venturi geometry and comparisons are made with experimental data. The scale‐adaptive model shows several improvements compared with standard turbulence models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A wall‐distance free k–ε turbulence model is developed that accounts for the near‐wall and low Reynolds number effects emanating from the physical requirements. The model coefficients/functions depend non‐linearly on both the strain rate and vorticity invariants. Included diffusion terms and modified Cε(1,2) coefficients amplify the level of dissipation in non‐equilibrium flow regions, thus reducing the kinetic energy and length scale magnitudes to improve prediction of adverse pressure gradient flows, involving flow separation and reattachment. The model is validated against a few flow cases, yielding predictions in good agreement with the direct numerical simulation (DNS) and experimental data. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
A numerical method for the efficient calculation of three‐dimensional incompressible turbulent flow in curvilinear co‐ordinates is presented. The mathematical model consists of the Reynolds averaged Navier–Stokes equations and the k–ε turbulence model. The numerical method is based on the SIMPLE pressure‐correction algorithm with finite volume discretization in curvilinear co‐ordinates. To accelerate the convergence of the solution method a full approximation scheme‐full multigrid (FAS‐FMG) method is utilized. The solution of the k–ε transport equations is embedded in the multigrid iteration. The improved convergence characteristic of the multigrid method is demonstrated by means of several calculations of three‐dimensional flow cases. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
12.
A new turbulent flow with distinct three‐dimensional characteristics has been designed in order to study the impact of mean‐flow skewing on the turbulent coherent vortices and Reynolds‐averaged statistics. The skewing of a unidirectional plane Couette flow was achieved by means of a spanwise pressure gradient. Direct numerical simulations of the statistically steady Couette–Poiseuille flow enabled in‐depth explorations of the turbulence field in the skewed flow. The imposition of a modest spanwise gradient turned the mean flow about 8° away from the original Couette flow direction and this turning angle remained nearly the same over the entire cross section. Nevertheless, a substantial non‐alignment between the turbulent shear stress angle and the mean velocity gradient angle was observed. The structure parameter turned out to slightly exceed that in the pure Couette flow, contrary to the observations made in some other three‐dimensional shear flows. Coherent flow structures, which are known to be associated with the Reynolds shear stress in near‐wall regions, were identified by the λ2‐criterion. Instantaneous and ensemble‐averaged vortices resembled those found in the unidirectional Couette flow. In the skewed flow, however, the vortex structures were turned to align with the local mean‐flow direction. The conventional symmetry between Case 1 and Case 2 vortices was broken due to the mean‐flow three‐dimensionality. The turning of the coherent vortices and the accompanying symmetry‐breaking gave rise to secondary and tertiary turbulent shear stress components. By averaging the already ensemble‐averaged shear stresses associated with Case 1 and Case 2 vortices in the homogeneous directions, a direct link between the educed near‐wall structures and the Reynolds‐averaged turbulent stresses was established. These observations provide evidence in support of the hypothesis that the structural model proposed for two‐dimensional turbulent boundary layers remains valid also in flows with moderate mean three‐dimensionality. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The paper reports on experiments carried out over a wide range of Reynolds numbers in a high pressure wind tunnel. The model was a sharp-edged rectangular cylinder with aspect ratio height/width 1:5 (width/span ratio 1:10.8), which was investigated in both basic orientations, lengthwise (4×103<Re<4×105) and perpendicular to the flow (2.7×104<Re<6.4×105). The Reynolds number is based on the height of the model normal to the flow. Steady and unsteady forces were measured with a piezoelectric balance. Thus along with steady (i.e. time averaged values) including the base pressure coefficient, also power spectra and probability density functions were measured yielding for example Strouhal numbers, higher statistical moments, etc. A response diagram for the vortex resonance phenomenon was taken for the natural bending motion of the slender model. If lift coefficient for constant angle of attack is plotted against Reynolds number, a significant Reynolds number effect is seen. For α=4°, the curve shows an inflection point and the lift varies between 0.3 and 0.6. For α=6° and 2° there are similar variations shifted to lower and higher values of Re, respectively. Probably the shapes of separation bubbles that depend on the Reynolds number are responsible for these effects. No Reynolds number effects were observed when the long side was normal to the flow, an orientation where reattachment at the side walls is not possible. Comparing both basic cases (α=0° and 90°), the interpretation of the probability distributions of lift force leads to the conclusion that the possibility of reattachment (α=0°) seems to enhance the degree of order in the vortex shedding process.  相似文献   

14.
This paper presents for the simple flow over a flat plate the near‐wall profiles of mean flow and turbulence quantities determined with seven eddy‐viscosity turbulence models: the one‐equation turbulence models of Menter and Spalart & Allmaras; the k‐ω two‐equation model proposed by Wilcox and its TNT, BSL and SST variants and the $k-\sqrt{k}L$ two‐equation model. The results are obtained at several Reynolds numbers ranging from 107 to 2.5 × 109. Sets of nine geometrically similar Cartesian grids are adopted to demonstrate that the numerical uncertainty of the finest grid predictions is negligible. The profiles obtained numerically have relevance for the application of so‐called ‘wall function’ boundary conditions. Such wall functions refer to assumptions about the flow in the viscous sublayer and the ‘log law’ region. It turns out that these assumptions are not always satisfied by our results, which are obtained by computing the flow with full near‐wall resolution. In particular, the solution in the ‘log‐law’ region is dependent on the turbulence model and on the Reynolds number, which is a disconcerting result for those who apply wall functions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The incompressible flow around bluff bodies (a square cylinder and a cube) is investigated numerically using turbulence models. A non‐linear kε model, which can take into account the anisotropy of turbulence with less CPU time and computer memory then RSM or LES, is adopted as a turbulence model. In tuning of the model coefficients of the non‐linear terms are adjusted through the examination of previous experimental studies in simple shear flows. For the tuning of the coefficient in the eddy viscosity (=Cμ), the realizability constraints are derived in three types of basic 2D flow patterns, namely, a simple shear flow, flow around a saddle and a focal point. Cμ is then determined as a function of the strain and rotation parameters to satisfy the realizability. The turbulence model is first applied to a 2D flow around a square cylinder and the model performance for unsteady flows is examined focussing on the period and the amplitude of the flow oscillation induced by Karman vortex shedding. The applicability of the model to 3D flows is examined through the computation of the flow around a surface‐mounted cubic obstacle. The numerical results show that the present model performs satisfactorily to reproduce complex turbulent flows around bluff bodies. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
Theoretical studies have been made to determine the pressure drops caused by abrupt flow area expansion/contraction in small circular pipes for two‐phase flow of air and water mixtures at room temperature and near atmospheric pressure. Two‐phase computational fluid dynamics (CFD) calculations, using Eulerian–Eulerian model (with the air phase being compressible for pipe contraction case) are employed to calculate the pressure drop across sudden expansion and contraction. The pressure drop is determined by extrapolating the computed pressure profiles upstream and downstream of the expansion/contraction. The larger and smaller tube diameters are 1.6 and 0.84 mm, respectively. Computations have been performed with single‐phase water and air, and two‐phase mixtures in a range of Reynolds number (considering all‐liquid flow) from 1000 to 12 000 and flow quality from 1.2 × 10?3 to 1.6 × 10?2. The numerical results are validated against experimental data from the literature and are found to be in good agreement. The expansion and contraction loss coefficients are found to be different for single‐phase flow of air and water, and they agreed reasonably well with the commonly used theoretical predictions. Based on the numerical results as well as experimental data, correlations are developed for two‐phase flow pressure drops caused by the flow area contraction as well as expansion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Fully developed incompressible turbulent flow in a conical diffuser having a total divergence angle of 8° and an area ratio of 4∶1 has been simulated by ak-ε turbulence model with high Reynolds number and adverse pressure gradient. The research has been done for pipe entry Reynolds numbers of 1.16×105 and 2.93×105. The mean flow velocity and turbulence energy are predicted successfully and the advantage of Boundary Fit Coordinates approach is discussed. Furthermore, thek-ε turbulence model is applied to a flow in a conical diffuser having a total divergence angle of 30° with a perforated screen. A simplified mathematical model, where only the pressure drop is considered, has been used for describing the effect of the perforated screen. The optimum combination of the resistance coefficient and the location of the perforated screen is predicted for high diffuser efficiency or the uniform velocity distribution.  相似文献   

18.
This first segment of the two‐part paper systematically examines several turbulence models in the context of three flows, namely a simple flat‐plate turbulent boundary layer, an axisymmetric separating flow, and a swirling flow. The test cases are chosen on the basis of availability of high‐quality and detailed experimental data. The tested turbulence models are integrated to solid surfaces and consist of: Rodi's two‐layer kε model, Chien's low‐Reynolds number kε model, Wilcox's kω model, Menter's two‐equation shear‐stress‐transport model, and the one‐equation model of Spalart and Allmaras. The objective of the study is to establish the prediction accuracy of these turbulence models with respect to axisymmetric separating flows, and flows of high streamline curvature. At the same time, the study establishes the minimum spatial resolution requirements for each of these turbulence closures, and identifies the proper low‐Mach‐number preconditioning and artificial diffusion settings of a Reynolds‐averaged Navier–Stokes algorithm for optimum rate of convergence and minimum adverse impact on prediction accuracy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Calculations of mean velocities and Reynolds stresses are reported for the recirculating flow established in the wake of two‐dimensional polynomial‐shaped obstacles that are symmetrical about a vertical axis and mounted in the water channel downstream of a fully developed channel flow for Re=6×104. The study involves calculations of mean and fluctuating flow properties in the streamwise and spanwise directions and include comparisons with experimental data [Almeida GP, Durão DFG, Heitor MV. Wake flows behind two‐dimensional model hills. Experimental Thermal and Fluid Science 1993; 7: 87–101] for flow around a single obstacle with data resulting from the interaction of consecutive obstacles, using two versions of the low‐Reynolds number differential second‐moment (DSM) closure model. The results include analysis of the turbulent stresses in local flow co‐ordinates and reveal flow structure qualitatively similar to that found in other turbulent flows with a reattachment zone. It is found that the standard isotropization of production model (IPM), based on that proposed by Gibson and Launder [Ground effects on pressure fluctuations in the atmospheric boundary layer. Journal of Fluid Mechanics 1978; 86(3): 191–511], with the incorporation of the wall reflection model of Craft and Launder [New wall‐reflection model applied to the turbulent impinging jet. AIAA Journal 1992; 32(12): 2970–2972] predicts the mean velocities quite well, but underestimates the size of the recirculation region and turbulent quantities in the shear layer. These inadequacies are circumvented by adopting a new cubic Reynolds stress closure scheme based on that more recently developed by Craft and Launder [A Reynolds stress closure designed for complex geometries. International Journal of Heat and Fluid Flow 1996; 17: 245–254] which satisfies the two component limit (TCL) of turbulence. In this model the geometry‐specific quantities, such as the wall‐normal vector or wall distance, are replaced by invariant dimensionless gradient indicators. Also, the model captures the diverse behaviour of the different components of the stress dissipation, εij, near the wall and uses a novel decomposition for the fluctuating pressure terms. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents an evaluation of the capability of turbulence models available in the commercial CFD code FLUENT 6.0 for their application to hydrofoil turbulent boundary layer separation flow at high Reynolds numbers. Four widely applied two‐equation RANS turbulence models were assessed through comparison with experimental data at Reynolds numbers of 8.284×106 and 1.657×107. They were the standard k–εmodel, the realizable k–εmodel, the standard k–ωmodel and the shear‐stress‐transport (SST) k–ωmodel. It has found that the realizable k–εturbulence model used with enhanced wall functions and near‐wall modelling techniques, consistently provides superior performance in predicting the flow characteristics around the hydrofoil. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号