首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Cartesian cut cell mesh generation procedure is developed together with a finite volume Euler solver for a two‐fluid system with a free surface. A fast and robust triangle to triangle overlap scheme is used to determine the intersection of a body‐surface with the background Cartesian mesh. Improvements to the cut cell routines include a new treatment for multiple cuts within a single cell and a surface trimming procedure to ensure a good quality mesh around solid boundaries. The formulae for calculating all necessary information about a cut cell are also presented. These are generic and can be used for arbitrarily irregular boundary elements. A collocated finite volume method with a high resolution Godunov‐type scheme in space is used for discretization of the governing flow equations. By computing in both the air and water regions simultaneously in a consistent manner, the free surface is automatically captured as a contact discontinuity in the density field without the need for any special free surface tracking method. The algorithm incorporates the artificial compressibility method with a dual time stepping strategy to maintain a divergence free velocity field. The mathematical formulation including its numerical implementation of the method is reviewed and results for a number of test cases are also presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A level set formulation in a generalized curvilinear coordinate is developed to simulate the free surface waves generated by moving bodies or the sloshing of fluid in a container. The Reynolds‐averaged Navier–Stokes (RANS) equations are modified to account for variable density and viscosity in two‐phase (i.e. water–air) fluid flow systems. A local level set method is used to update the level set function and a least square technique adopted to re‐initialize it at each time step. To assess the developed algorithm and its versatility, a selection of different fluid–structure interaction problems are examined, i.e. an oscillating flow in a two‐dimensional square tank, a breaking dam involving different density fluids, sloshing in a two‐dimensional rectangular tank and a Wigley ship hull travelling in calm water. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
By treating it as a contact discontinuity in the density field, a free surface between two immiscible fluids can be automatically ‘captured’ by the enforcement of conservation laws. A surface‐capturing method of this kind requires no special tracking or fitting treatment for the free surface, thereby offering the advantage of algorithm simplicity over the surface‐tracking or the surface‐fitting method. A surface‐capturing method based on a new multi‐fluid incompressible Navier–Stokes formulation is developed. It is applied to a variety of free‐surface flows, including the Rayleigh–Taylor instability problem, the ship waves around a Wigley hull and a model bubble‐rising problem to demonstrate the validity and versatility of the present method. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, the performance of the incompressible SPH (ISPH) method and an improved weakly compressible SPH (IWCSPH) method for free surface incompressible flows are compared and analyzed. In both methods, the Navier–Stokes equations are solved, and no artificial viscosity is used. The ISPH algorithm in this paper is based on the classical SPH projection method with common treatments on solid boundaries and free surfaces. The IWCSPH model includes some advanced corrective algorithms in density approximation and solid boundary treatment (SBT). In density approximation, the moving least squares (MLS) approach is applied to re‐initialize density every several steps to obtain smoother and more stable pressure fields. An improved coupled dynamic SBT algorithm is implemented to obtain stable pressure values near solid wall areas and, thus, to minimize possible numerical oscillations brought in by the solid boundaries. Three representative numerical examples, including a benchmark test for hydrostatic pressure, a dam breaking problem and a liquid sloshing problem, are comparatively analyzed with ISPH and IWCSPH. It is demonstrated that the present IWCSPH is more attractive than ISPH in modeling free surface incompressible flows as it is more accurate and more stable with comparable or even less computational efforts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A numerical technique is developed for the simulation of free surface flows and interfaces. This technique combines the strength on the finite element method (FEM) in calculating the field variables for a deforming boundary and the versatility of the volume-of-fluid (VOF) technique in advection of the fluid interfaces. The advantage of the VOF technique is that it allows the simulation of interfaces with large deformations, including surface merging and breaking. However, its disadantage is that is solving the flow equations, it cannot resolve interfaces smaller than the cell size, since information on the subgrid scale is lost. Therefore the accuracy of the interface reconstruction and the treatment of the boundary conditions (i.e. viscous stresses and surface tension forces) become grid-size-dependent. On the other hand, the FEM with deforming interface mesh allows accurate implementation of the boundary conditions, but it cannot handle large surface deformations occurring in breaking and merging of liquid regions. Combining the two methods into a hybrid FEM-VOF method eliminates the major shortcomings of both. The outcome is a technique which can handle large surface deformations with accurate treatment of the boundary conditions. For illustration, two computational examples are presented, namely the instability and break-up of a capillary jet and the coalescence collision of two liquid drops.  相似文献   

6.
In the simulation of non-linear free surface flows in a finite domain a major concern is with the radiation condition to be applied at the ‘open’ boundary. No general theoretical radiation conditions are known to exist. In this paper a new open boundary condition is formulated based on energy flux equalization between the non-linear inner domain and a linear outer domain. The non-linear flow in the inner domain is solved numerically using a semi-Lagrangian procedure. The energy flux arriving at the open boundary is removed using a new open boundary condition which acts as a linear wave absorber. For the cases studied the performance of this boundary condition is found to be quite good.  相似文献   

7.
A semi‐discrete finite element methodology for the modelling of transient free surface flows in the context of Eulerian interface capturing is proposed. The focus of this study is put on the choice of an appropriate time integration strategy for the accurate modelling of the dynamics of free surfaces and of interfacial physics. It is composed of an adaptive time integration scheme for the Navier–Stokes equations, and of the implicit midpoint rule for the transport equation of the Eulerian marker variable. The adaptive scheme allows the automatic determination of a time‐step size that follows the physics of the problem under study, which facilitates the accurate modelling of stiff free surface flows. It is shown that the implicit midpoint rule reduces mass loss for each fluid. Various free surface flow problems are studied to verify and validate the proposed time integration strategy. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
A new finite element procedure called the net inflow method has been developed to simulate time-dependent incompressible viscous flow including moving free surfaces and inertial effects. As a fixed mesh approach with triangular element, the net inflow method can be used to analyse the free surface flow in both regular and irregular domains. Most of the empty elements are excluded from the computational domain, which is adjusted successively to cover the entire region occupied by the liquid. The volume of liquid in a control volume is updated by integrating the net inflow of liquid during each iteration. No additional kinetic equation or material marker needs to be considered. The pressure on the free surface and in the liquid region can be solved explicitly with the continuity equation or implicitly by using the penalty function method. The radial planar free surface flow near a 2D point source and the dam-breaking problem on either a dry bed or a still liquid have been analysed and presented in this paper. The predictions agree very well with available analytical solutions, experimental measurements and/or other numerical results.  相似文献   

9.
In this study, a novel Mach‐uniform preconditioning method is developed for the solution of Euler equations at low subsonic and incompressible flow conditions. In contrast to the methods developed earlier in which the conservation of mass equation is preconditioned, in the present method, the conservation of energy equation is preconditioned, which enforces the divergence free constraint on the velocity field even at the limiting case of incompressible, zero Mach number flows. Despite most preconditioners, the proposed Mach‐uniform preconditioning method does not have a singularity point at zero Mach number. The preconditioned system of equations preserves the strong conservation form of Euler equations for compressible flows and recovers the artificial compressibility equations in the case of zero Mach number. A two‐dimensional Euler solver is developed for validation and performance evaluation of the present formulation for a wide range of Mach number flows. The validation cases studied show the convergence acceleration, stability, and accuracy of the present Mach‐uniform preconditioner in comparison to the non‐preconditioned compressible flow solutions. The convergence acceleration obtained with the present formulation is similar to those of the well‐known preconditioned system of equations for low subsonic flows and to those of the artificial compressibility method for incompressible flows. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we present a finite element model for free surface flows on fixed meshes. The main novelty of the approach, compared with typical fixed mesh finite element models for such flows, is that we take advantage of the particularities of free surface flow, instead of considering it a particular case of two‐phase flow. The fact that a given free surface implies a known boundary condition on the interface, allows us to solve the Navier–Stokes equations on the fluid domain uncoupled from the solution on the rest of the finite element mesh. This, together with the use of enhanced integration allows us to model low Froude number flows accurately, something that is not possible with typical two‐phase flow models applied to free surface flow. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
An implicit, upwind arithmetic scheme that is efficient for the solution of laminar, steady, incompressible, two-dimensional flow fields in a generalised co-ordinate system is presented in this paper. The developed algorithm is based on the extended flux-vector-splitting (FVS) method for solving incompressible flow fields. As in the case of compressible flows, the FVS method consists of the decomposition of the convective fluxes into positive and negative parts that transmit information from the upstream and downstream flow field respectively. The extension of this method to the solution of incompressible flows is achieved by the method of artificial compressibility, whereby an artificial time derivative of the pressure is added to the continuity equation. In this way the incompressible equations take on a hyperbolic character with pseudopressure waves propagating with finite speed. In such problems the ‘information’ inside the field is transmitted along its characteristic curves. In this sense, we can use upwind schemes to represent the finite volume scheme of the problem's governing equations. For the representation of the problem variables at the cell faces, upwind schemes up to third order of accuracy are used, while for the development of a time-iterative procedure a first-order-accurate Euler backward-time difference scheme is used and a second-order central differencing for the shear stresses is presented. The discretized Navier–Stokes equations are solved by an implicit unfactored method using Newton iterations and Gauss–Siedel relaxation. To validate the derived arithmetical results against experimental data and other numerical solutions, various laminar flows with known behaviour from the literature are examined. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
Peyret (J. Fluid Mech., 78, 49–63 (1976)) and others have described artificial compressibility iteration schemes for solving implicit time discretizations of the unsteady incompressible Navier-Stokes equations. Such schemes solve the implicit equations by introduing derivatives with respect to a pseudo-time variable τ and marching out to a steady state in τ. The pseudo-time evolution equation for the pressure p takes the form ?p/? = ?a2??.u, where a is an artificial compressibility parameter and u is the fluid velocity vector. We present a new scheme of this type in which convergence is accelerated by a new procedure for setting a and by introducing an artificial bulk viscosity b into the momentum equation. This scheme is used to solve the non-linear equations resulting from a fully implicit time differencing scheme for unsteady incompressible flow. We find that the best values of a and b are generally quite different from those in the analogous scheme for steady flow (J. D. Ramshaw and V. A. Mousseau, Comput. Fluids, 18, 361–367 (1990)), owing to the previously unrecognized fact that the character of the system is profoundly altered by the pressence of the physical time derivative terms. In particular, a Fourier dispersion analysis shows that a no longer has the significance of a wave speed for finite values of the physical time step δt,. Inded, if on sets a ? |u| as usual, the artificial sound waves cease to exist when δt is small and this adversely affects the iteration convergence rate. Approximate analytical expressions for a and b are proposed and the benefits of their use relative to the conventional values a ~ |u| and b = 0 are illustrated in simple test calculations.  相似文献   

13.
This paper proposes a hybrid volume-of-fluid (VOF) level-set method for simulating incompressible two-phase flows. Motion of the free surface is represented by a VOF algorithm that uses high resolution differencing schemes to algebraically preserve both the sharpness of interface and the boundedness of volume fraction. The VOF method is specifically based on a simple order high resolution scheme lower than that of a comparable method, but still leading to a nearly equivalent order of accuracy. Retaining the mass conservation property, the hybrid algorithm couples the proposed VOF method with a level-set distancing algorithm in an implicit manner when the normal and the curvature of the interface need to be accurate for consideration of surface tension. For practical purposes, it is developed to be efficiently and easily extensible to three-dimensional applications with a minor implementation complexity. The accuracy and convergence properties of the method are verified through a wide range of tests: advection of rigid interfaces of different shapes, a three-dimensional air bubble's rising in viscous liquids, a two-dimensional dam-break, and a three-dimensional dam-break over an obstacle mounted on the bottom of a tank. The standard advection tests show that the volume advection algorithm is comparable in accuracy with geometric interface reconstruction algorithms of higher accuracy than other interface capturing-based methods found in the literature. The numerical results for the remainder of tests show a good agreement with other numerical solutions or available experimental data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The steady Navier–Stokes equations in primitive variables are discretized in conservative form by a vertex-centred finite volume method Flux difference splitting is applied to the convective part to obtain an upwind discretization. The diffusive part is discretized in the central way. In its first-order formulation, flux difference splitting leads to a discretization of so-called vector positive type. This allows the use of classical relaxation methods in collective form. An alternating line Gauss–Seidel relaxation method is chosen here. This relaxation method is used as a smoother in a multigrid method. The components of this multigrid method are: full approximation scheme with F-cycles, bilinear prolongation, full weighting for residual restriction and injection of grid functions. Higher-order accuracy is achieved by the flux extrapolation method. In this approach the first-order convective fluxes are modified by adding second-order corrections involving flux limiting. Here the simple MinMod limiter is chosen. In the multigrid formulation the second-order discrete system is solved by defect correction. Computational results are shown for the well known GAMM backward-facing step problem and for a channel with a half-circular obstruction.  相似文献   

15.
In this paper, an efficient numerical method for unsteady free surface motions, with simple geometries, has been devised. Under the potential flow assumption, the governing equation of free surface flows becomes a Laplace equation, which is treated here by means of a series expansions of the velocity potential. The free surface is represented with a height function. The present method is applied to surface gravity waves to test the stability and accuracy of the method. To show the versatility of the method, a model for a dip formation is considered. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we formulate a level set method in the framework of finite elements‐semi‐Lagrangian methods to compute the solution of the incompressible Navier–Stokes equations with free surface. In our formulation, we use a quasi‐monotone semi‐Lagrangian scheme, which is both unconditionally stable and essentially non oscillatory, to compute the advective terms in the Navier–Stokes equations, the transport equation and the equation of the reinitialization stage for the level set function. The method we propose is quite robust and flexible with regard to the mesh and the geometry of the domain, as well as the magnitude of the Reynolds number. We illustrate the performance of the method in several examples, which range from a benchmark problem to test the volume conservation property of the method to the flow past a NACA0012 foil at high Reynolds number. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a simple and practical scheme for capturing moving interfaces or free boundaries in multi‐fluid simulations. The scheme, which is called THINC (tangent of hyperbola for interface capturing), makes use of the hyperbolic tangent function to compute the numerical flux for the fluid fraction function, and gives a conservative, oscillation‐less and smearing‐less solution to the fluid fraction function even for the extremely distorted interfaces of arbitrary complexity. The numerical results from the THINC scheme possess adequate quality for practical applications, which make the extra geometric reconstruction, such as those in most of the volume of fluid (VOF) methods unnecessary. Thus the scheme is quite simple. The numerical tests show that the THINC scheme has competitive accuracy compared to most exiting methods. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Computational fluid mechanics techniques for examining free surface problems in two‐dimensional form are now well established. Extending these methods to three dimensions requires a reconsideration of some of the difficult issues from two‐dimensional problems as well as developing new formulations to handle added geometric complexity. This paper presents a new finite element formulation for handling three‐dimensional free surface problems with a boundary‐fitted mesh and full Newton iteration, which solves for velocity, pressure, and mesh variables simultaneously. A boundary‐fitted, pseudo‐solid approach is used for moving the mesh, which treats the interior of the mesh as a fictitious elastic solid that deforms in response to boundary motion. To minimize mesh distortion near free boundary under large deformations, the mesh motion equations are rotated into normal and tangential components prior to applying boundary conditions. The Navier–Stokes equations are discretized using a Galerkin–least square/pressure stabilization formulation, which provides good convergence properties with iterative solvers. The result is a method that can track large deformations and rotations of free surface boundaries in three dimensions. The method is applied to two sample problems: solid body rotation of a fluid and extrusion from a nozzle with a rectangular cross‐section. The extrusion example exhibits a variety of free surface shapes that arise from changing processing conditions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
A new technique for the numerical simulation of the free surface flows is developed. This technique is based on the finite element method with penalty formulation, and a flux method for surface advection. The advection part which is completely independent of the momentum solver is based on subdividing the fluid domain into small subvolumes along one of the co-ordinate axis. The subvolumes are then used to find the height function which will later describe the free surface. The free surface of the fluid in each subvolume is approximated by a line segment and its slope is calculated using the volume of the fluid in the two neighbouring subvolumes. Later, the unidirectional volume flux from one subvolume to its neighbouring one is calculated using the conservation laws, and the new surface line segments are reconstructed. This technique, referred to as the Height–Flux Method (HFM) is implemented to simulate the temporal instability of a capillary jet. The results of the numerical simulation well predict the experimental data. It is also shown that the HFM is computationally more efficient than the techniques which use a kinematic boundary condition for the surface advection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号