首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome (cyt) P450s comprise the enzyme superfamily responsible for human oxidative metabolism of a majority of drugs and xenobiotics. Electronic delivery of electrons to cyt P450s could be used to drive the natural catalytic cycle for fundamental investigations, stereo- and regioselective synthesis, and biosensors. We describe herein 30 nm nanometer-thick films on electrodes featuring excess human cyt P450s and cyt P450 reductase (CPR) microsomes that efficiently mimic the natural catalytic pathway for the first time. Redox potentials, electron-transfer rates, CO-binding, and substrate conversion rates confirmed that electrons are delivered from the electrode to CPR, which transfers them to cyt P450. The film system enabled electrochemical probing of the interaction between cyt P450 and CPR for the first time. Agreement of film voltammetry data with theoretical simulations supports a pathway featuring a key equilibrium redox reaction in the natural catalytic pathway between reduced CPR and cyt P450 occurring within a CPR-cyt P450 complex uniquely poised for substrate conversion.  相似文献   

2.
Structural interactions that enable electron transfer to cytochrome‐P450 (CYP450) from its redox partner CYP450‐reductase (CPR) are a vital prerequisite for its catalytic mechanism. The first structural model for the membrane‐bound functional complex to reveal interactions between the full‐length CYP450 and a minimal domain of CPR is now reported. The results suggest that anchorage of the proteins in a lipid bilayer is a minimal requirement for CYP450 catalytic function. Akin to cytochrome‐b5 (cyt‐b5), Arg 125 on the C‐helix of CYP450s is found to be important for effective electron transfer, thus supporting the competitive behavior of redox partners for CYP450s. A general approach is presented to study protein–protein interactions combining the use of nanodiscs with NMR spectroscopy and SAXS. Linking structural details to the mechanism will help unravel the xenobiotic metabolism of diverse microsomal CYP450s in their native environment and facilitate the design of new drug entities.  相似文献   

3.
This communication demonstrates direct electron delivery from electrodes to cyt P450 reductases in stable films ( approximately 100 nm thick) of genetically enriched CYP1A2 and CYP3A4 microsomes made by layer-by-layer assembly with polyions. Reversible voltammetry of films containing genetically enriched cyt P450 monooxygenase microsomes was shown to involve cyt P450 reductase by comparison with the pure rabbit reductase and by lack of characteristic reactions of iron heme enzymes, such as reaction of the FeII form with CO and catalytic electrochemical reduction of oxygen and hydrogen peroxide. The microsome films were activated electrochemically to catalyze styrene epoxidation, consistent with the pathway utilized in the human liver, although further work is required to establish this definitively.  相似文献   

4.
NADPH‐cytochrome P450 reductase (CPR) serves as electron donor for cytochrome P450 catalyzed monooxygenase reactions utilizing flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) as electron transfer cofactors. Here, stable films of human and rabbit CPRs with didodecyldimethylammonium bromide (DDAB), dimyristoylphosphatidyl choline (DMPC), and poly(diallyldimethylammonium) (PDDA) were made on pyrolytic graphite (PG) electrodes for comparative structural and electrochemical studies. CD and UV‐VIS absorbance spectra suggested that near native CPR conformation is retained in PDDA films, and some conformational changes occur in DMPC or DDAB films. Cyclic voltammetry of these films gave quasireversible pairs of peaks at average formal potential ?0.246±0.008 V vs. NHE. In human CPR‐DDAB (H‐CPR‐DDAB), a second pair of peaks at +0.317 V vs. NHE was found that depended strongly on identity of buffer and salt. Excepting H‐CPR in DDAB, films showed similar voltammetry, formal potentials, and ks values. While CPR‐PDDA films had near native CPR structures, electrochemical parameters did not differ significantly from CPR‐DMPC films. The relative independence of film voltammetry from the influence of film materials for CPRs is in contrast with heme iron proteins that, while retaining near native structures, have formal potentials that depend significantly on identity of the film material.  相似文献   

5.
Previously, our laboratory demonstrated that one cytochrome P450 isoenzyme can influence the catalytic properties of another P450 isoenzyme when combined in a reconstituted system. Moreover, our data and that of other investigators indicate that P450 interaction is required for catalytic activity even when one isoenzyme is present. The goal of the current study was to examine the possible mechanism of these interactions in more detail. Analyzing recently published X-ray data of microsomal P450 enzymes and protein docking studies, four types of dimer formations of P450 enzymes were examined in more detail. In case of two dimer types, the aggregating partner was shown to contribute to NADPH cytochrome P450 reductase (CPR) binding-a flavoprotein whose interaction with P450 is required for expressing P450 functional activity of the neighboring P450 moiety. Thus, it was shown that dimerization of P450 enzymes might result in an altered affinity towards the CPR. Two dimer types were shown to exist only in the presence of a substrate, while the other two types exist also without a substrate present. The molecular basis was established for the fact that the presence of a substrate and other P450 enzymes simultaneously determine the catalytic activity. Furthermore, a kinetic model was improved describing the catalytic activity of P450 enzymes as a function of CPR concentration based on equilibrium between different supramolecular organizations of P450 enzymes. This model was successfully applied in order to explain our experimental data and that of other investigators.Eszter Hazai and Zsolt Bikádi contributed equally to this workDavid Kupfer-Deceased  相似文献   

6.
Pinostrobin (PI, 5‐hydroxy‐7‐methoxyflavanone) is a natural flavonoid known for its rich pharmacological activities. The objective of this study was to identify the human liver cytochrome P450 (CYP450) isoenzymes involved in the metabolism of PI. A single hydoxylated metabolite was obtained from PI after an incubation with pooled human liver microsomes (HLMs). The relative contributions of different CYP450s were evaluated using CYP450‐selective inhibitors in HLMs and recombinant human CYP450 enzymes, and the results revealed the major involvement of CYP1A2, CYP2C9 and CYP2E1 in PI metabolism. We also evaluated the ability of PI to inhibit and induce human cytochrome P450 enzymes in vitro . High‐performance liquid chromatography and liquid chromatography–tandem mass spectrometry analytical techniques were used to estimate the enzymatic activities of seven drug‐metabolizing CYP450 isozymes in vitro . In HLMs, PI did not inhibit CYP 1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 or CYP3A4 (IC50 > 100 μm ). In the induction studies, PI had minimal effects on CYP1A2, CYP2B6and CYP3A4 activity. Based on these results, PI would not be expected to cause clinically significant CYP450 inhibition or induction.  相似文献   

7.
We report a unique strategy for the development of a H2O2‐dependent cytochrome P450BM3 system, which catalyzes the monooxygenation of non‐native substrates with the assistance of dual‐functional small molecules (DFSMs), such as N‐(ω‐imidazolyl fatty acyl)‐l ‐amino acids. The acyl amino acid group of DFSM is responsible for bounding to enzyme as an anchoring group, while the imidazolyl group plays the role of general acid–base catalyst in the activation of H2O2. This system affords the best peroxygenase activity for the epoxidation of styrene, sulfoxidation of thioanisole, and hydroxylation of ethylbenzene among those P450–H2O2 system previously reported. This work provides the first example of the activation of the normally H2O2‐inert P450s through the introduction of an exogenous small molecule. This approach improves the potential use of P450s in organic synthesis as it avoids the expensive consumption of the reduced nicotinamide cofactor NAD(P)H and its dependent electron transport system. This introduces a promising approach for exploiting enzyme activity and function based on direct chemical intervention in the catalytic process.  相似文献   

8.
The cytochromes P450 are a large class of heme‐containing enzymes that catalyze a broad range of chemical reactions in biosystems, mainly through oxygen‐atom transfer to substrates. A relatively unknown reaction catalyzed by the P450s, but very important for human health, is the activation of halogenated substrates, which may lead to toxicity problems. However, its catalytic mechanism is currently unknown and, therefore, we performed a detailed computational study. To gain insight into the metabolism of halogenated compounds by P450 enzymes, we have investigated the oxidative and reductive P450‐mediated activation of tetra‐ and trichloromethane as halogenated models with density functional theory (DFT) methods. We propose an oxidative halosylation mechanism for CCl4 under aerobic conditions by Compound I of P450, which follows the typical Groves‐type rebound mechanism. By contrast, the metabolism of CHCl3 occurs preferentially via an initial hydrogen‐atom abstraction rather than halosylation. Kinetic isotope effect studies should, therefore, be able to distinguish the mechanistic pathways of CCl4 versus CHCl3. We find a novel mechanism that is different from the well accepted P450 substrate activation mechanisms reported previously. Moreover, the studies highlight the substrate specific activation pathways by P450 enzymes leading to different products. These reactivity differences are rationalized using Marcus theory equations, which reproduce experimental product distributions.  相似文献   

9.
The hydroperoxo iron(III) intermediate P450camFeIII–OOH, being the true Compound 0 (Cpd 0) involved in the natural catalytic cycle of P450cam, could be transiently observed in the peroxo‐shunt oxidation of the substrate‐free enzyme by hydrogen peroxide under mild basic conditions and low temperature. The prolonged lifetime of Cpd 0 enabled us to kinetically examine the formation and reactivity of P450camFeIII–OOH species as a function of varying reaction conditions, such as pH, and concentration of H2O2, camphor, and potassium ions. The mechanism of hydrogen peroxide binding to the substrate‐free form of P450cam differs completely from that observed for other heme proteins possessing the distal histidine as a general acid–base catalyst and is mainly governed by the ability of H2O2 to undergo deprotonation at the hydroxo ligand coordinated to the iron(III) center under conditions of pH≥p${K{{{\rm P450}\hfill \atop {\rm a}\hfill}}}$ . Notably, no spectroscopic evidence for the formation of either Cpd I or Cpd II as products of heterolytic or homolytic O?O bond cleavage, respectively, in Cpd 0 could be observed under the selected reaction conditions. The kinetic data obtained from the reactivity studies involving (1R)‐camphor, provide, for the first time, experimental evidence for the catalytic activity of the P450FeIII–OOH intermediate in the oxidation of the natural substrate of P450cam.  相似文献   

10.
Cytochrome P450 enzymes (CYPs or P450s) are the most important enzymes involved in the phase I metabolism of drugs (and other xenobiotics) in humans, and the corresponding drug metabolites are needed as reference substances for their structural confirmation and for pharmacological or toxicological characterization. We have previously shown that biotechnological synthesis of such metabolites is feasible by whole-cell biotransformation with human CYPs recombinantly expressed in the fission yeast Schizosaccharomyces pombe. It was the aim of this study to compare the activity of seven human microsomal CYPs (CYP2C9, CYP2D6, CYP3A4, CYP3A5, CYP3A7, CYP17, and CYP21) upon coexpression with NADPH-cytochrome P450 oxidoreductases (CPRs) from various origins, namely, human CPR (hCPR) and its homologues from fission yeast (ccr1) and the bishop’s weed Ammi majus (AmCPR), respectively. For this purpose, 28 recombinant strains were needed, with five of them having been constructed previously and 23 strains being newly constructed. Bioconversion experiments showed that coexpression of a CPR does not only influence the reaction rate but, in some cases, also exerts an influence on the metabolite pattern. For CYP3A enzymes, coexpression of hCPR yielded the best results, while for another two, hCPR was equally helpful as ccr1 (both CYP17 and CYP21) or AmCPR (CYP17 only), respectively. Interestingly, CYP2D6 displayed its highest activity when coexpressed with ccr1 and CYP2C9 with AmCPR. These results corroborate the view of CPR as a well-suited bio-brick in synthetic biology for the construction of artificial enzyme complexes.  相似文献   

11.
We describe herein an electrochemically driven drug metabolism strategy based on nanocomposites that integrate cyt P450 2C9 (CYP2C9) isozyme microsomes with cyt P450 reductase (CPR), indium tin oxide (ITO) nanoparticles and chitosan (CS). This novel bioelectronic system enables monitoring of the drug metabolism and enzyme inhibition.  相似文献   

12.
The cytochrome P450 (P450) enzymes are mainly localized to the endoplasmic reticulum (ER), where they function within catalytic complexes metabolizing xenobiotics and some endogenous substrates. However, certain members of families 1–3 were also found in other subcellular compartments, such as mitochondria, plasma membrane, and lysosomes. The physiological function of these enzymes in non-ER locations is not known, although plasma-membrane-associated P450s have been described to be catalytically active and to participate in immune-mediated reactions with autoantibody formation that can trigger drug-induced hepatitis. Several retention/retrieval mechanisms are active in the ER retention of the P450s and inverse integration of the translated P450 into the ER membrane appears to be responsible for transport to the plasma membrane. Furthermore, hydrophilic motifs in the NH2-terminal part have been suggested to be important for mitochondrial import. Phosphorylation of P450s has been described to be important for increased rate of degradation as well as for targeting into mitochondria. It was also suggested that the mitochondria-targeted P450s from families 1–3 could be active in drug metabolism using an alternative electron transport chain. In this review we present an update of the field emphasizing studies concerning localization, posttranslational modification, such as phosphorylation, and intracellular transport of microsomal P450s.  相似文献   

13.
Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high‐valent iron(IV)–oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)–hydroperoxo complex, was tested for catalytic activity and found to be a sluggish oxidant of hydroxylation, epoxidation and sulfoxidation reactions. In a recent twist of events, evidence has emerged of several nonheme iron(III)–hydroperoxo complexes that appear to react with substrates via oxygen atom transfer processes. Although it was not clear from these studies whether the iron(III)–hydroperoxo reacted directly with substrates or that an initial O?O bond cleavage preceded the reaction. Clearly, the catalytic activity of heme and nonheme iron(III)–hydroperoxo complexes is substantially different, but the origins of this are still poorly understood and warrant a detailed analysis. In this work, an extensive computational analysis of aromatic hydroxylation by biomimetic nonheme and heme iron systems is presented, starting from an iron(III)–hydroperoxo complex with pentadentate ligand system (L52). Direct C?O bond formation by an iron(III)–hydroperoxo complex is investigated, as well as the initial heterolytic and homolytic bond cleavage of the hydroperoxo group. The calculations show that [(L52)FeIII(OOH)]2+ should be able to initiate an aromatic hydroxylation process, although a low‐energy homolytic cleavage pathway is only slightly higher in energy. A detailed valence bond and thermochemical analysis rationalizes the differences in chemical reactivity of heme and nonheme iron(III)–hydroperoxo and show that the main reason for this particular nonheme complex to be reactive comes from the fact that they homolytically split the O?O bond, whereas a heterolytic O?O bond breaking in heme iron(III)–hydroperoxo is found.  相似文献   

14.
A recent novel strategy for constructing artificial metalloenzymes (ArMs) that target new-to-nature functions uses dual-functional small molecules (DFSMs) with catalytic and anchoring groups for converting P450BM3 monooxygenase into a peroxygenase. However, this process requires excess DFSMs (1000 equivalent of P450) owing to their low binding affinity for P450, thus severely limiting its practical application. Herein, structural optimization of the DFSM-anchoring group considerably enhanced their binding affinity by three orders of magnitude (Kd≈10−8 M), thus approximating native cofactors, such as FMN or FAD in flavoenzymes. An artificial cofactor-driven peroxygenase was thus constructed. The co-crystal structure of P450BM3 bound to a DFSM clearly revealed a precatalytic state in which the DFSM participates in H2O2 activation, thus facilitating peroxygenase activity. Moreover, the increased binding affinity substantially decreases the DFSM load to as low as 2 equivalents of P450, while maintaining increased activity. Furthermore, replacement of catalytic groups showed disparate selectivity and activity for various substrates. This study provides an unprecedented approach for assembling ArMs by binding editable organic cofactors as a co-catalytic center, thereby increasing the catalytic promiscuity of P450 enzymes.  相似文献   

15.
Cytochrome (cyt) P450s hydroxylate a variety of substrates that can differ widely in their chemical structure. The importance of these enzymes in drug metabolism and other biological processes has motivated the study of the factors that enable their activity on diverse classes of molecules. Protein dynamics have been implicated in cyt P450 substrate specificity. Here, 2D IR vibrational echo spectroscopy is employed to measure the dynamics of cyt P450(cam) from Pseudomonas putida on fast time scales using CO bound at the active site as a vibrational probe. The substrate-free enzyme and the enzyme bound to both its natural substrate, camphor, and a series of related substrates are investigated to explicate the role of dynamics in molecular recognition in cyt P450(cam) and to delineate how the motions may contribute to hydroxylation specificity. In substrate-free cyt P450(cam), three conformational states are populated, and the structural fluctuations within a conformational state are relatively slow. Substrate binding selectively stabilizes one conformational state, and the dynamics become faster. Correlations in the observed dynamics with the specificity of hydroxylation of the substrates, the binding affinity, and the substrates' molecular volume suggest that motions on the hundreds of picosecond time scale contribute to the variation in activity of cyt P450(cam) toward different substrates.  相似文献   

16.
Human toxic responses are very often related to metabolism. Liver metabolism is traditionally studied, but other organs also convert chemicals and drugs to reactive metabolites leading to toxicity. When DNA damage is found, the effects are termed genotoxic. Here we describe a comprehensive new approach to evaluate chemical genotoxicity pathways from metabolites formed in situ by a broad spectrum of liver, lung, kidney and intestinal enzymes. DNA damage rates are measured with a microfluidic array featuring a 64-nanowell chip to facilitate fabrication of films of DNA, electrochemiluminescent (ECL) detection polymer [Ru(bpy)2(PVP)10]2+ {(PVP = poly(4-vinylpyridine))} and metabolic enzymes. First, multiple enzyme reactions are run on test compounds using the array, then ECL light related to the resulting DNA damage is measured. A companion method next facilitates reaction of target compounds with DNA/enzyme-coated magnetic beads in 96 well plates, after which DNA is hydrolyzed and nucleobase-metabolite adducts are detected by LC-MS/MS. The same organ enzymes are used as in the arrays. Outcomes revealed nucleobase adducts from DNA damage, enzymes responsible for reactive metabolites (e.g. cyt P450s), influence of bioconjugation, relative dynamics of enzymes suites from different organs, and pathways of possible genotoxic chemistry. Correlations between DNA damage rates from the cell-free array and organ-specific cell-based DNA damage were found. Results illustrate the power of the combined DNA/enzyme microarray/LC-MS/MS approach to efficiently explore a broad spectrum of organ-specific metabolic genotoxic pathways for drugs and environmental chemicals.  相似文献   

17.
Copper and nickel oxide samples supported on MgO were prepared by wet impregnation method. The obtained solids were heated at 350 °C and 450 °C. The extent of copper and nickel oxides was fixed at 16.7 mol%. The effect of g-irradiation (0.2-1.6 MGy) on the surface and catalytic properties of the solids were investigated. The techniques employed were XRD, nitrogen adsorption at -196 °C and H2O2 decomposition. The results revealed that the g-irradiation up to 0.8 MGy of CuO/MgO-450 °C effected a measurable decrease in the crystallite size of CuO phase with subsequent increase in its degree of ordering. Irradiation at a dose of 1.6 MGy brought about a complete conversion of MgO into Mg(OH)2 during its cooling from 450 °C to room temperature via interacting with atmospheric water vapor. The S BET and total pore volume of CuO/MgO precalcined at 350 °C and 450 °C increased progressively as a function of g-ray dose reached a maximum limit at 0.8 MGy. Gamma-irradiation of NiO/MgO-450 °C solids up to 0.8 MGy increased the degree of ordering of MgO and NiO phases without changing their crystallite size. The exposure of these solids to 1.6 MGy led to an effective transformation of some of NiO (not dissolved in MgO lattice) into Ni(OH)2 via interacting with atmospheric water vapor during cooling from 450 °C to room temperature. Gamma-irradiation led to a measurable increase in the S BET and V p of NiO/MgO system. Gamma-irradiation of the two investigated systems resulted in both increase and decrease in their catalytic activities in H2O2 decomposition depending mainly on the irradiation dose and calcination temperature. This treatment, however, did not modify the mechanism of the catalytic reaction, but changed the catalytic active sites without changing their energetic nature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
A synergistically catalytic luminescent nanozyme was designed and synthesized for the degradation and enzymatic fluorescence detection of diethylstilbestrol, an endocrine-disrupting environmental pollutant. Because of the integration of cocatalytic Cu2+ ion and CeO2 particle, luminescent Tb3+ ion, and functional ligand dipicolinic acid through flexible metal-organic framework structure, this nanozyme has not only the dual functions of luminescence and multienzyme such as laccase and horseradish peroxidase but also synergistically catalytic effect via a regeneration of Cu2+ oxidized by CeO2. The synergistically catalytic effect of nanozyme greatly enhances the degradation of diethylstilbestrol. The resultants sensitized the luminescence of Tb3+ ions, which was used to sense the pM level of diethylstilbestrol in environmental samples. Such a high-performance catalytic luminescent nanozyme can be used to replace natural enzymes for the enzyme-based degradations and ultrasensitive assays. The strategy of constructing artificial enzymes directly from functional units provides a new way for developing fit-for-purpose multifunctional artificial enzymes.  相似文献   

19.
The diflavo-protein NADPH cytochrome P450 reductase (CPR) is the key electron transfer partner for all drug metabolizing cytochrome P450 enzymes in humans. The protein delivers, consecutively, two electrons to the heme active site of the P450 in a carefully orchestrated process which ultimately leads to the generation of a high valent oxo-heme moiety. Despite its central role in P450 function, no direct electrochemical investigation of the purified protein has been reported. Here we report the first voltammetric study of purified human CPR where responses from both the FMN and FAD cofactors have been identified using both cyclic and square wave voltammetry. For human CPR redox responses at −2 and −278 mV (with a ratio of 1e:3e) vs NHE were seen at pH 7.9 while the potentials for rat CPR at pH 8.0 were −20 and −254 mV. All redox responses exhibit a pH dependence of approximately −59 mV/pH unit consistent with proton coupled electron transfer reactions of equal stoichiometry.  相似文献   

20.
The arachidonic acid metabolites thromboxane A2 and prostacyclin are highly potent regulators of cell physiology. They are both formed by enzymatic rearrangement of the 9,11-epidioxy prostaglandin H2 catalyzed, however, by thromboxane and prostacyclin synthase, respectively. The two enzymes have been isolated, sequenced, and characterized as hemethiolate (“P450”) enzymes. The different isomerization products can be explained on the same catalytic principle by a different ligation of the heme centers with the two epidioxy oxygens atoms. This requires different conformations for substrate binding at the active site, which is substantiated by the different inhibitors and amino acid sequences of the enzymes. In a hypothesis which has mechanistic principles in common with the P450-monooxygenases and the allene oxide synthases, oxy radicals are formed first and rearrange to carbon radicals. These could then rapidly be converted into carbocations by the ferrylthiolate or iron(III )thiyl structures formed as intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号