首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Multiwalled carbon nanotubes (MWCNTs) were functionalized with two types of chemical moieties (i.e. carboxylic, ? COOH and hydroxyl benzoic acid groups, ‐HBA) on their sidewalls in order to improve their interaction with a liquid crystalline polymer (LCP) and dispersion in LCP. We have investigated the rheological, mechanical, dynamic mechanical, and thermal properties in detail with variation of HBA‐functionalized MWCNTs in the LCP matrix. Effect of the dispersion state of the functionalized MWCNTs in the LCP matrix on the rheological behavior was also studied. The composites containing HBA‐functionalized MWCNTs showed higher complex viscosity, storage, and loss modulus than the composites with the same loading of raw MWCNTs and MWCNT‐COOH. It was suggested that the HBA‐functionalized MWCNTs exhibited a better dispersion in the polymer matrix and formed stronger CNT‐polymer interaction in the composites than the raw MWCNTs and MWCNT‐COOH, which was also confirmed by FESEM and FTIR studies. As a result, the overall mechanical performance of the HBA‐MWCNT‐LCP composites could be improved significantly. For example, the addition of 4 wt% HBA‐MWCNT to LCP resulted in the considerable improvements in the tensile strength and modulus of LCP (by 66 and 90%, respectively). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Polyimide (PI)‐based nanocomposites containing aminophenyl functionalized multiwalled carbon nanotubes (AP‐MWCNTs) obtained through a diazonium salt reaction was successfully prepared by in situ polymerization. PI composites with different loadings of AP‐MWCNTs were fabricated by the thermal conversion of poly(amic acid) (PAA)/AP‐MWCNTs. The mechanical and electrical properties of the AP‐MWCNTs/PI composites were improved compared with those of pure PI due to the homogeneous dispersion of AP‐MWCNTs and the strong interfacial covalent bonds between AP‐MWNTs and the PI matrix. The conductivity of AP‐MWNTs/PI composites (5:95 w/w) was 9.32 × 10?1 S/cm which was about 1015 times higher than that of Pure PI. The tensile strength and tensile modules of the AP‐MWCNTs/PI composites with 0.5 wt % of AP‐MWCNTs were increased by about 77% (316.9 ± 10.5 MPa) and 25% (8.30 ± 1.10 GPa) compared to those of pure PI, respectively. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 960–966  相似文献   

3.
曾涵  龚兰新 《应用化学》2012,29(4):462-469
通过壳聚糖-g-N-羧甲基-2-硫代-4,5-2H咪唑啉酮(CTS-g-N-CSIDZ)非共价功能化多壁碳纳米管(MWCNTs)的方式制备固定漆酶载体,该复合物载体主要通过物理吸附和漆酶活性中心与载体上配体之间的配位作用来固定漆酶,较大程度地保持了游离漆酶活性位原始构象.将固定了漆酶的复合物附着在裸玻碳电极上便构筑了复合物固定漆酶修饰玻碳电极.在以分光光度法测定了这种复合物载体对漆酶的担载量、固定漆酶比活力、稳定性、重复使用性及其催化2,6-二甲氧基苯酚(DMP)氧化动力学参数的基础上,还对基于此种复合物固定漆酶修饰玻碳电极作为化学传感器(以DMP作为底物)的性能进行了研究.结果表明,该复合物具有较高的固酶担载量(81.7 mg/g)和固定漆酶比活力(1.33 U/mg);而作为电化学传感器的复合物固定漆酶修饰玻碳电极对底物DMP具有较高的亲和力(对DMP的米氏常数KM是0.0918 mmol/L),较高的灵敏度( 3680 mA· L/mol),较低的检测限(3.3×10-4 mmol/L),较高的响应选择性,良好的重现性、重复使用性和长期稳定性.这种漆酶基电极有望用作电流型特定结构的酚类传感器.  相似文献   

4.
采用还原法制备了AuNPs/MWCNTs复合材料,并构建了氧化还原蛋白质的固定化和生物传感界面AuNPs/MWCNTs/GC电极.以肌红蛋白(Myoglobin,Mb)为例,研究了固定化蛋白质在AuNPs/MWCNTs/GC电极上的直接电化学.结果表明,AuNPs/MWCNTs复合材料不仅能有效地促进Mb与电极表面的直接电子转移,而且能很好地保持固定化Mb的生物催化活性.Mb/AuNPs/MWCNTs/GC电极对H2O2具有良好的电催化还原性能,其线性响应范围为1~138μmol·L-1,检测限为0.32μmol·L-1(S/N=3),并具有较低的米氏常数(0.143 mmol·L-1).该电极操作简单,响应迅速,稳定性和重现性好,有望用于蛋白质的固定化及第三代生物传感器的制备.  相似文献   

5.
Thermal conductive and antistatic polyetherimide (PEI) nanocomposites were fabricated by encapsulating non‐destructive amido group functionalized multi‐walled carbon nanotubes (MWCNTs) into the PEI matrix. Briefly, nearly half of acyl chloride groups in poly (acryloyl chloride) reacted with sodium azide and formed acyl azide groups, which could conjunct with MWCNTs via non‐destruction nitrenes addition reaction. The remaining acyl chloride groups in poly (acryloyl chloride) hydrolyzed into carboxyl groups, therefore COOH‐rich MWCNTs (MWCNTs@azide polyacrylic acid) were synthesized without serious damage to the MWCNTs. Then, MWCNTs@azide polyacrylic acid were then reacted with p‐Phenylene diamine (PPD) and transformed to amido group functionalized MWCNTs (MWCNTs@PPD). MWCNTs@PPD could participate into the in situ polymerization of PEI matrix, where the conjunction between bisphenol A dianhydride and amido groups on MWCNTs@PPD guaranteed the strong covalent bonding at the PEI/MWCNTs interface, which directly avoided the aggregation of MWCNTs. Owing to the non‐destructive modification of MWCNTs and tight matrix/filler interface, the volume electric and thermal conductivity of as‐prepared nanocomposites was up to 6.4 × 10?8 S/cm (1.0 wt%, MWCNTs@PPD) and 0.43 W/(m · K) (4.0 wt%, MWCNTs@PPD), respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
用壳聚糖对多壁碳纳米管进行修饰,构建了一种用于固定血红蛋白的新型复合材料,并研究了血红蛋白在该碳纳米管上的电化学性质及其对过氧化氢的电催化活性.扫描电镜结果表明,壳聚糖修饰的多壁碳纳米管呈单一的纳米管状,并能均匀分散在玻碳电极表面.紫外光谱分析表明血红蛋白在该复合膜内能很好地保持其原有的二级结构.将该材料固定在玻碳电极上后,血红蛋白能成功地实现其直接电化学.根据峰电位差随着扫描的变化,计算得到血红蛋白在壳聚糖修饰的碳纳米管膜上的电荷转移系数为0.57,表观电子转移速率常数为7.02 s-1.同时,该电极对过氧化氢显示出良好的催化性能,电流响应信号与H2O2浓度在1.0×10-6 ~1.5×10-3 mol/L间呈线性关系,检出限为5.0×10-7 mol/L.修饰电极显示了良好的稳定性.  相似文献   

7.
Multi-walled carbon nanotubes(MWCNTs) were coated with ZnO by a hydrothermal method.The resulting nanocomposites were mixed with the Nafion solution to form a composite matrix for the fabrication of hemoglobin(Hb) biosensor.To prevent the leak of Hb molecules of the biosensor,silica sol-gel film was coated on the surface of the Hb/ZnO-MWCNTs/Nafion electrode.The silica sol-gel/Hb/ZnO-MWCNTs/Nafion film exhibited a pair of well-defined,quasi-reversible redox peaks.This biosensor showed excellent electroca...  相似文献   

8.
Jan-Wei Shie 《Talanta》2009,78(3):896-75
A conductive biocomposite film (MWCNTs-NF-Hb) containing multi-walled carbon nanotubes (MWCNTs) incorporated with entrapped haemoglobin (Hb) in nafion (NF) has been synthesized on glassy carbon electrode (GCE), gold (Au), indium tin oxide (ITO) and screen printed carbon electrode (SPCE) separately by potentiostatic methods. The presence of both MWCNTs and NF in the biocomposite film enhances the surface coverage concentration (Γ), and increases the electron transfer rate constant (Ks) to 132%. The biocomposite film exhibits a promising enhanced electrocatalytic activity towards the reduction of O2, H2O2 and CCl3COOH. The cyclic voltammetry has been used for the measurement of electrocatalysis results of analytes by means of biocomposite film-modified GCEs. The MWCNTs-NF-Hb-modified GCEs’ sensitivity values are higher than the values obtained for other film modified GCEs. The surface morphology of the biocomposite films which have been deposited on ITO has been studied using scanning electron microscopy and atomic force microscopy. The studies have revealed that there was an incorporation of NF and immobilization of Hb on MWCNTs. Finally, the flow injection analysis has been used for the amperometric studies of analytes at MWCNTs-Hb and MWCNTs-NF-Hb film modified SPCEs. The amperometric study results have shown higher slope values for MWCNTs-NF-Hb biocomposite film.  相似文献   

9.
Understanding the characteristics of nanomaterials in the context of electrode designs for bio‐electrocatalysis is an emerging research direction. Applications for fuel cells, batteries, and biosensors are directly benefited. The objective of this study is to understand the influence of unfunctionalized multiwalled carbon nanotubes (MWNT) in comparison to carboxylated nanotubes (MWNT?COOH) for pi‐pi stacking with 1‐pyrenebutyric acid (Py) and covalent immobilization of bilirubin oxidase (BOD) enzyme toward the resulting oxygen reduction currents. We designed pyrolytic graphite‐edge electrodes modified with MWNT/Py, MWNT?COOH/Py, or only MWNT?COOH for carbodiimide activation and BOD immobilization. The relative increase in surface ?COOH groups as we move from MWNT to MWNT/Py to MWNT?COOH/Py modification is voltammetrically estimated. Although the MWNT?COOH/Py displayed the highest relative amount of surface ?COOH groups, the oxygen reduction current was the largest for the BOD‐immobilized MWNT/Py electrode than others. Results indicate that unfunctionalized MWNT is the optimal choice for pi‐pi stacking with pyrene linkers and covalent BOD immobilization as biocathode for energy devices. Favorable hydrophobic MWNT surface to interact more closely with the electron‐receiving T1 Cu site of BOD, as opposed to the relatively polar and more defective MWNT?COOH material due to functionalization, is suggested to be one of the underlying factors for the observed electrocatalytic trend.  相似文献   

10.
A novel biopolymer/room‐temperature ionic liquid composite film based on carrageenan, room temperature ionic liquid (IL) [1‐butyl‐3‐methylimidazolium tetra?uoroborate ([BMIM]BF4)] was explored for immobilization of hemoglobin (Hb) and construction of biosensor. Direct electrochemistry and electrocatalytic behaviors of Hb entrapped in the IL‐carrageenan composite ?lm on the surface of glassy carbon electrode (GCE) were investigated. UV‐vis spectroscopy demonstrated that Hb in the IL‐carrageenan composite ?lm could retain its native secondary structure. A pair of well‐de?ned redox peaks of Hb was obtained at the Hb‐IL‐carrageenan composite ?lm modi?ed electrode through direct electron transfer between the protein and the underlying electrode. The heterogeneous electron transfer rate constant (ks) was 2.02 s?1, indicating great facilitation of the electron transfer between Hb and IL‐carrageenan composite film modi?ed electrode. The modi?ed electrode showed excellent electrocatalytic activity toward reduction of hydrogen peroxide with a linear range of 5.0×10?6 to 1.5×10?4 mol/L and the detection limit was 2.12×10?7 mol/L (S/N=3). The apparent Michaelis‐Menten constant KMapp for hydrogen peroxide was estimated to be 0.02 mmol/L, indicating that the biosensor possessed high af?nity to hydrogen peroxide. In addition, the proposed biosensor showed good reproducibility and stability.  相似文献   

11.
Bionanocomposites of poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) (P3HB3HHx) (13 % by mol of HHx) with multiwalled carbon nanotubes (MWCNTs) were prepared to obtain semiconductive nanocomposites for potential applications as scaffolds for nerve repair. The effect of the polymer/nanotube interface on the composite properties was studied using oxidized (oxi‐MWCNTs) and surface modified MWCNTs with low‐molecular weight P3HB3HHx (pol‐MWCNTs), in a ratio from 0.3 to 1.2 wt % for each type of MWCNTs employed. Morphology and conductive properties of the composites indicated a good interaction between pol‐MWCNTs and the polymer matrix. Composites with improved conductivity were obtained with only 0.3 wt % of pol‐MWCNTs added. However, agglomeration and lower conductivity was observed for samples with oxi‐MWCNTs. Cell viability studies carried out with neurospheres showed that samples with 1.2 wt % of pol‐MWCNTs are not cytotoxic and, in addition favors the neurospheres growth on the composite surface. Considering the electrical properties and biological behavior, nanocomposites of P3HB3HHx and pol‐MWCNTs are promising substrates for the regeneration of nerve tissue. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 349–360  相似文献   

12.
A new electrochemical biosensor was constructed by immobilization of hemoglobin (Hb) on a DNA modified carbon ionic liquid electrode (CILE), which was prepared by using 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIMBF4) as the modifier. UV‐vis absorption spectroscopic result indicated that Hb remained its native conformation in the composite film. The fabricated Nafion/Hb/DNA/CILE was characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). A pair of well‐defined redox peaks was obtained on the modified electrode, indicated that the Nafion and DNA composite film provided an excellent biocompatible microenvironment for keeping the native structure of Hb and promoting the direct electron transfer rate of Hb with the basal electrode. The electrochemical parameters of Hb in the composite film were further calculated with the results of the charge transfer coefficient (α) and the apparent heterogeneous electron transfer rate constant (ks) as 0.41 and 0.31 s?1. The proposed electrochemical biosensor showed good electrocatalytic response to the reduction of trichloroacetic acid (TCA), H2O2, NO and the apparent Michaelis–Menten constant (KMapp) for the electrocatalytic reaction was calculated, respectively.  相似文献   

13.
Direct‐methanol fuel cells are proton‐exchange fuel cell in which methanol is used as the fuel. The important advantage of these fuel cells is the simplicity of transport and storage of methanol. In this study, methanol fuel cell electrocatalysts including graphene quantum dots (GQDs), functionalized multi‐walled carbon nanotubes (f‐MWCNTs) and GQDs/f‐MWCNTs composite were synthesized. The structures of synthesized electrocatalysts were highlighted by scanning electron microscope (SEM), raman spectroscopy, UV–vis spectroscopy, fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS) and x‐ray diffraction (XRD) method. After that, the effective surface areas (ESA) of GQDs, f‐MWCNTs and GQDs/f‐MWCNTs were calculated. Finally, GQDs/f‐MWCNTs composite modified glassy carbon electrode (GQDs/f‐MWCNTs/GCE) showed highest current signals for methanol oxidation than those of comparable GQDs/GCE and f‐MWCNTs/GCE.  相似文献   

14.
A facile phospholipid/room‐temperature ionic liquid (RTIL) composite material based on dimyristoylphosphatidylcholine (DMPC) and 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([bmim]PF6) was exploited as a new matrix for immobilizing protein. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were adopted to characterize this composite film. Hemoglobin (Hb) was chosen as a model protein to investigate the composite system. UV‐vis absorbance spectra showed that Hb still maintained its heme crevice integrity in this composite film. By virtue of the Hb/DMPC/[bmim]PF6 composite film‐modified glassy carbon electrode (GCE), a pair of well‐defined redox peaks of Hb was obtained through the direct electron transfer between protein and underlying GCE. Moreover, the reduction of O2 and H2O2 at the Hb/DMPC/[bmim]PF6 composite film‐modified GCE was dramatically enhanced.  相似文献   

15.
This article introduces a newly innovative idea for preparation of superconductive ternary polymeric composites of polyamide 6 (PA6), conductive carbon black (CCB), and multiwalled carbon nanotubes (MWCNTs) with different weight ratios by a melt‐mixing technique. The complementary effects of CCB and MWCNTs at different compositions on rheological, physical, morphological, thermal, and dynamic mechanical and electrical properties of the ternary composites have been examined systematically. We have used a novel formulation to produce high‐weight fraction ternary polymer composites that show extremely higher conductivity when compared with their corresponding binary polymer composites at the same carbon loading. For example, with an addition of 10 wt % MWCNTs into the CCB/PA6 composite preloaded with 10 wt % CCB, the electrical conductivity of these ternary composites was about 5 S/m, which was 10 times that of the CCB/PA6 binary composite (0.5 S/m) and 125 times that of the MWCNT/PA6 binary composite (0.04 S/m) at 20 wt % carbon loading. The incorporation of the MWCNTs effectively enhanced the thermal stability and crystallization of the PA6 matrix in the CCB/PA6 composites through heterogeneous nucleation. The MWCNTs appeared to significantly affect the mechanical and rheological properties of the PA6 in the CCB/PA6 composites, a way notably dependent on the MWCNT contents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1203–1212, 2010  相似文献   

16.
A novel method for preparation of hydrogen peroxide biosensor was presented based on immobilization of hemoglobin (Hb) on carbon‐coated iron nanoparticles (CIN). CIN was firstly dispersed in a chitosan solution and cast onto a glassy carbon electrode to form a CIN/chitosan composite film modified electrode. Hb was then immobilized onto the composite film with the cross‐linking of glutaraldehyde. The immobilized Hb displayed a pair of stable and quasireversible redox peaks and excellent electrocatalytic reduction of hydrogen peroxide (H2O2), which leading to an unmediated biosensor for H2O2. The electrocatalytic response exhibited a linear dependence on H2O2 concentration in a wide range from 3.1 μM to 4.0 mM with a detection limit of 1.2 μM (S/N=3). The designed biosensor exhibited acceptable stability, long‐term life and good reproducibility.  相似文献   

17.
A novel carboxyphenyl covalent immobilization technique has been successfully developed to realize the effective attachment of two typical heme proteins, hemoglobin (Hb) and cytochrome c (Cyt‐c), onto underlying glassy carbon electrode (GCE). Primarily, the GCE surface is functionalized with aromatic 4‐carboxyphenyl (4‐CP) group by the electrochemical reduction of diazonium cations, producing covalently linked carboxyl‐terminated active GCE surface to work as a ‘bridge’. Then, Hb and Cyt‐c are readily attached to GCE through the ‘bridge’ by functional covalently combination between ? NH2 terminal groups of proteins and ? COOH terminal groups of 4‐CP, obtaining Hb/4‐CP/GCE and Cyt‐c/4‐CP/GCE. On both electrodes, well‐defined peaks attributing to the FeIII/FeII couple of heme group of Hb and Cyt‐c are clearly observed with the electron transfer rate constant (ks) evaluated to be 2.48±0.05 s?1 and 2.73±0.05 s?1, respectively. It is attractive that the formal potential (E°') of the immobilized Hb and Cyt‐c are estimated to be 50 and 100 mV (vs. SCE), respectively, which are closer to the standard redox potential of native Hb and Cyt‐c in solution, owing to the good biocompatibility of 4‐CP groups. The electrodes also exhibit fast response, high sensitivity and well stability for the amperometric detection of H2O2 at a fairly mild potential of 0 V without any mediators, obtaining rather small apparent Michaelis‐Menten constant (KMapp) values of 113 μM for Hb/4‐CP/GCE and 101 μM for Cyt‐c/4‐CP/GCE. All the experimental results indicated that the covalent graft 4‐carboxyphenyl group plays an important role in constructing a “biocompatible bridge” to help the direct electron transfer of Hb and Cyt‐c with favorable biocompatibility and good bio‐ electrocatalytic affinity in virtue of the substituted aryl group only consisting of C, H and O elements, which is similar with the constitutes of organics. It makes the system of functionalized covalent immobilization of proteins onto carbon electrode a promising platform for fabricating the third‐generation biosensors. A new approach for realizing direct electrochemistry of proteins, as well as design of novel bioelectronic devices has been accordingly provided.  相似文献   

18.
The multi‐walled carbon nanotubes (MWCNTs) were first oxidized by nitric acid to form a MWCNT‐COOH. Then, it was modified with thiosemicarbazide to produce MWCNT‐semi. Thus, these carbon materials, MWCNTs, MWCNT‐COOH and MWCNT‐semi, have been used as efficient adsorbents for the removal of cadmium from aqueous solutions. The influence of variables including pH, concentration of the cadmium, amount of adsorbents and contact time was investigated by the batch method. The kinetic studies carried out using different kinetic models such as pseudo‐first‐order, pseudo‐second‐order, and intraparticle diffusion models. The sorption process with each adsorbent was well described by pseudo‐second‐order kinetics which it was agreed well with the experimental data. The values of regression coefficient of various adsorption isotherms like Langmuir, Freundlich and Tempkin to obtain the characteristic parameters of each model have been carried out. The results showed which the Langmuir isotherm for all adsorbents and Tempkin model for MWCNT‐COOH and MWCNT‐semi was found to best represent the measured sorption data. Toxicity of these samples was evaluated in human embryonic kidney HEK293 and human breast cancer SKBR3 cell lines after culturing cells for 24 h. Cellular investigations showed that the modified MWCNTs in particular MWCNT‐semi have considerably significant toxic impact on SKBR3 as compared to HEK293 at concentration 3 µg/mL.  相似文献   

19.
In this work, dodecylamine‐modified graphene nanosheets (DA‐GNSs) and γ‐aminopropyl‐triethoxysilane‐treated multiwalled carbon nanotubes (f‐MWCNTs) are employed to prepare cyanate ester (CE) thermally conductive composites. By adding 5 wt% DA‐GNSs or f‐MWCNTs to the CE resin, the thermal conductivities of the composites became 3.2 and 2.5 times that of the CE resin, respectively. To further improve the thermal conductivity, a mixture of the two fillers was utilized. A remarkable synergetic effect between the DA‐GNSs and f‐MWCNTs on improving the thermal conductivity of CE resin composites was demonstrated. The composite containing 3 wt% hybrid filler exhibited a 185% increase in thermal conductivity compared with pure CE resin, whereas composites with individual DA‐GNSs and f‐MWCNTs exhibited increases of 158 and 108%, respectively. Moreover, the composite with hybrid filler retained high electrical resistivity. Scanning electron microscopy images of the composite morphologies showed that the modified graphene nanosheets (GNSs) and multiwalled carbon nanotubes (MWCNTs) were uniformly dispersed in the CE matrix, and a number of junction points among MWCNTs and between MWCNTs and GNSs formed in the composites with hybrid fillers. Generally, we can conclude that these composites filled with hybrid fillers may be promising materials of further improving the thermal conductivity of CE composites. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号