首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
[SnI8{Fe(CO)4}4][Al2Cl7]2 contains the [SnI8{Fe(CO)4}4]2+ cation with an unprecedented highly coordinated, bicapped SnI8 prism. Given the eightfold coordination with the most voluminous stable halide, it is all the more surprising that this SnI8 arrangement is surrounded only by fragile Fe(CO)4 groups in a clip‐like fashion. Inspite of a predominantly ionic bonding situation in [SnI8{Fe(CO)4}4]2+, the I????I? distances are considerably shortened (down to 371 pm) and significantly less than the van der Waals distance (420 pm). The title compound is characterized by single‐crystal structure analysis, spectroscopic methods (EDXS, FTIR, Raman, UV/Vis, Mössbauer), thermogravimetry, and density functional theory methods.  相似文献   

3.
The reaction of a SnICl solution with LiSi(SiMe3)3 gave the anionic metalloid tin cluster {Sn10[Si(SiMe3)3]4}2? ( 7 ) in good yield. The arrangement of the ten tin atoms in the cluster core can be described as a distorted centaur polyhedron. Quantum chemical calculations suggest that there are 26 bonding electrons in the cluster core, which may be described as an arachno cluster in agreement with Wade’s rules. NMR and mass spectrometric investigations showed that 7 is highly reactive, which may be due to the open ligand shell. The easily available tin atoms in 7 thereby open the door to further subsequent reactions, in which 7 may act as a building block to larger cluster aggregates.  相似文献   

4.
Chemistry that uses metalloid tin clusters as a starting material is of fundamental interest towards understanding the reactivity of such compounds. Since we identified {Sn10[Si(SiMe3)3]4}2? 7 as an ideal candidate for such reactions, we present a further step in the understanding of metalloid tin cluster chemistry. In contrast to germanium chemistry, ligand elimination seems to be a major reaction channel, which leads to the more open metalloid cluster {Sn10[Si(SiMe3)3]3}? 9 , in which the Sn core is only shielded by three Si(SiMe3)3 ligands. Compound 9 is obtained through different routes and is crystallised together with two different countercations. Besides the structural characterisation of this novel metalloid tin cluster, the electronic structure is analysed by 119Sn Mössbauer spectroscopy. Additionally, possible reaction pathways are discussed. The presented first step into the chemistry of metalloid tin clusters thus indicates that, with respect to metalloid germanium clusters, more reaction channels are accessible, thereby leading to a more complex reaction system.  相似文献   

5.
6.
A “naked” aluminum atom links two aluminum tetrahedra in the [Al7{N(SiMe3)2}6] ion (see picture), which results from the reaction of a metastable AlCl solution with LiN(SiMe3)2 and crystallizes with [Li(OEt2)3]+ as cation. This unique structure among molecular metal atom clusters represents a small but characteristic section of cubic close-packed aluminum.  相似文献   

7.
8.
Solvatothermal syntheses have been exploited to effect the isolation of three novel polyoxoalkoxometalate clusters, [{Fe(OH)(CH3CN)2} Fe6OCl6{(OCH2)3CCH2OH}4] (1), [Fe10O2Cl8{(OCH2)3CCH2CH3}6] (2), and [(VO)2Fe8O2Cl6{(OCH2)3CCH2CH3}6] (3). The structure of 1 may be described as a hexametalate core {Fe6OCl6}10+, consisting of a octahedral arrangement of chloride ligands encasing an octahedron of six Fe(III) sites, with a central oxo group. The remaining four coordination sites at each octahedral iron center are occupied by doubly bridging oxygen donors from the trisalkoxo ligands. One triangular face of this substructure, defined by three oxygen atoms, from three adjacent trisalkoxo ligands, is capped by the {Fe(OH)(CH3CN)2}2+ subunit. The structure of 2 is based on the decametalate core of edge-sharing octahedra. The eight peripheral Fe(III) sites of the cluster bond to four oxygen donors from the trisalkoxo ligands, a terminal Cl ligand, and one of the 6-oxo groups. The two central iron sites are linked to four oxygen donors from the trisalkoxo ligands and to both of the 6-oxo groups. Cluster 3 is structurally related to 2 with two {FeCl}2+ units replaced by {VO}2+ groups.  相似文献   

9.
The addition of Sn and Zn ions to [Ge9] clusters by reaction of [Ge9]4? with SnPh2Cl2, ZnCp*2 (Cp*=pentamethylcyclopentadienyl), or Zn2[HC(Ph2P=NPh)2]2 is reported. The resulting Sn‐ and Zn‐bridged clusters [(Ge9)M(Ge9)]q? (M=Sn, q=4; M=Zn, q=6) display various coordination modes. The M atoms that coordinate to the open square of a C4v‐symmetric [Ge9] cluster form strong covalent multicenter M?Ge bonds, in contrast to the M atoms coordinating to triangular cluster faces. Molecular orbital analyses show that the M atoms of the Ge9M fragments coordinate to a second [Ge9] cluster with similar orbitals but in different ways. The [Ge9Sn]2?unit donates two electrons to the triangular face of a second [Ge9]2? cluster with D3h symmetry, whereas [Ge9Zn]2?acts as an electron acceptor when interacting with the triangular face of a D3h‐symmetric [Ge9]4? unit.  相似文献   

10.
11.
12.
13.
Redox reactions of [(L1,2Mg)2] and Sb2R4 (R=Me, Et) yielded the first Mg‐substituted realgar‐type Sb8 polystibides [(L1,2Mg)442:2:2:2‐Sb8)] (L1=HC[C(Me)N(2,4,6‐Me3C6H2)]2, L2=HC[C(Me)N(2,6‐i‐Pr2C6H3)]2). Compounds [(L1,2Mg)2] serve both as reducing agents, initiating the cleavage of the Sb?C bonds, and as stabilizers for the resulting Sb8 polyanion. The polystibides were characterized by NMR and IR spectroscopies, elemental analysis, and X‐ray structure analysis. In addition, results from quantum chemical calculations are presented.  相似文献   

14.
FeI centers in iron–sulfide complexes have little precedent in synthetic chemistry despite a growing interest in the possible role of unusually low valent iron in metalloenzymes that feature iron–sulfur clusters. A series of three diiron [(L3Fe)2(μ‐S)] complexes that were isolated and characterized in the low‐valent oxidation states FeII? S? FeII, FeII? S? FeI, and FeI? S? FeI is described. This family of iron sulfides constitutes a unique redox series comprising three nearly isostructural but electronically distinct Fe2(μ‐S) species. Combined structural, magnetic, and spectroscopic studies provided strong evidence that the pseudotetrahedral iron centers undergo a transition to low‐spin S=1/2 states upon reduction from FeII to FeI. The possibility of accessing low‐spin, pseudotetrahedral FeI sites compatible with S2? as a ligand was previously unknown.  相似文献   

15.
16.
Reaction of cyclooctatetraene (COT) iron(II) tricarbonyl, [Fe(cot)(CO)3], with one equivalent of K4Ge9 in ethylenediamine (en) yielded the cluster anion [Ge8Fe(CO)3]3? which was crystallographically‐characterized as a [K(2,2,2‐crypt)]+ salt in [K(2,2,2‐crypt)]3[Ge8Fe(CO)3]. The chemically‐reduced organometallic species [Fe(η3‐C8H8)(CO)3]? was also isolated as a side‐product from this reaction as [K(2,2,2‐crypt)][Fe(η3‐C8H8)(CO)3]. Both species were further characterized by EPR and IR spectroscopy and electrospray mass spectrometry. The [Ge8Fe(CO)3]3? cluster anion represents an unprecedented functionalized germanium Zintl anion in which the nine‐atom precursor cluster has lost a vertex, which has been replaced by a transition‐metal moiety.  相似文献   

17.
Heteronuclear Group 3 metal/iron carbonyl anion complexes ScFe(CO)3?, YFe(CO)3?, and LaFe(CO)3? are prepared in the gas phase and studied by mass‐selective infrared (IR) photodissociation spectroscopy as well as quantum‐chemical calculations. All three anion complexes are characterized to have a metal–metal‐bonded C3v equilibrium geometry with all three carbonyl ligands bonded to the iron center and a closed‐shell singlet electronic ground state. Bonding analyses reveal that there are multiple bonding interactions between the bare group‐3 elements and the Fe(CO)3? fragment. Besides one covalent electron‐sharing metal–metal σ bond and two dative π bonds from Fe to the Group 3 metal, there is additional multicenter covalent bonding with the Group 3 atom bonded to Fe and the carbon atoms.  相似文献   

18.
The title anion was synthesized by heating dimethylformamide (DMF) solution of the known Ni‐centered and Ni(CO)‐capped tin clusters [Ni@Sn9Ni(CO)]3?. The new anion represents the first example of face‐fused nine‐atom molecular clusters. The two clusters are identical elongated tricapped trigonal prisms of nido‐[Sn8Ni(CO)]6? with nickel at one of the capping positions. They are fused along a triangular face adjacent to a trigonal prismatic base and made of two Sn and one Ni atoms. The new anion is structurally characterized by single‐crystal X‐ray diffraction in the compound (K[222‐crypt])4[Sn14Ni(CO)]?DMF. Its presence in solution is corroborated by electrospray mass spectrometry.  相似文献   

19.
The title compounds with terminal N‐heterocyclic carbenes, namely octacarbonyl(imidazolidinylidene‐κC2)di‐μ3‐sulfido‐triiron(II)(2 FeFe), [Fe3(C3H6N2)(μ3‐S)2(CO)8], (I), and octacarbonyl(1‐methylimidazo[1,5‐a]pyridin‐3‐ylidene‐κC3)di‐μ3‐sulfido‐triiron(II)(2 FeFe), [Fe3(C8H8N2)(μ3‐S)2(CO)8], (II), have been synthesized. Each compound contains two Fe—Fe bonds and two S atoms above and below a triiron triangle. One of the eight carbonyl ligands deviates significantly from linearity. In (I), dimers generated by an N—H...S hydrogen bond are linked into [001] double chains by a second N—H...S hydrogen bond. These chains are packed by a C—H...O hydrogen bond to yield [101] sheets. In (II), dimers generated by an N—H...S hydrogen bond are linked by C—H...O hydrogen bonds to form [111] double chains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号