首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The MHD Falkner–Skan equation arises in the study of laminar boundary layers exhibiting similarity on the semi‐infinite domain. The proposed approach is equipped by the orthogonal Sinc functions that have perfect properties. This method solves the problem on the semi‐infinite domain without truncating it to a finite domain and transforming domain of the problem to a finite domain. In addition, the governing partial differential equations are transformed into a system of ordinary differential equations using similarity variables, and then they are solved numerically by the Sinc‐collocation method. It is shown that the Sinc‐collocation method converges to the solution at an exponential rate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we use nonlinear calculations to study curved boundary‐layer flows with pressure gradients and self‐similar suction or blowing. For an accelerated outer flow, stabilization occurs in the linear region while the saturation amplitude of vortices is larger than for flows with a decelerating outer flow. The combined effects of boundary‐layer suction and a favourable pressure gradient can give a significant stabilization of the flow. Streamwise vortices can be amplified on both concave and convex walls for decelerated Falkner–Skan flow with an overshoot in the velocity profile. The disturbance amplitude is generally lower far downstream compared with profiles without overshoot. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
A new analytical method, namely the homotopy analysis method (HAM), has been applied to investigate the temperature field associated with the Falkner–Skan boundary-layer problem, and a series solution is provided in this paper. The results of the present work show agreement with those of numerical solutions in a large range of Prandtl numbers (0 < Pr ≤ 100), which demonstrates the validity of the present analysis.  相似文献   

4.
This paper deals with the viscoelastic boundary layer flow past a plate. Constitutive assumptions of the FENE‐P model are taken into account. The pressure gradient is taken as non‐zero. The series solution of the non‐linear problem modelled in (Appl. Math. Lett. 2007; 20 :1211–1215) is developed by a homotopy analysis method (HAM). Numerical solution of the skin friction coefficient is also computed. Further a comparison between the numerical and HAM solutions is provided. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, a non‐iterative numerical approach for two‐dimensional laminar viscous flow over a semi‐infinite flat plane, governed by the Falkner–Skan equation is proposed. This approach can solve the non‐linear Falkner–Skan equation without any iteration and verifies that a direct numerical approach could be proposed even for non‐linear problems. Furthermore, this approach can also provide a family of iterative formulae, so that it logically contains traditional iterative techniques. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper we present a comparative study of three non-linear schemes for solving finite element systems of Navier–Stokes incompressible flows. The first scheme is the classical Newton–Raphson linearization, the second one is the modified Newton–Raphson linearization and the last one is a new scheme called the asymptotic–Newton method. The relative efficiency of these approaches is evaluated over a large number of examples. © 1997 John Wiley & Sons, Ltd.  相似文献   

7.
An improved hybrid Cartesian/immersed boundary method is proposed based on ghost point treatment. A second‐order Taylor series expansion is used to evaluate the values at the ghost points, and an inverse distance weighting method to interpolate the values due to its properties of preserving local extrema and smooth reconstruction. The present method effectively eliminates numerical instabilities caused by matrix inversion and flexibly adopts the interpolation in the vicinity of the boundary. Some typical fluid–solid flows, including viscous flow past a circular cylinder, a sphere, two cylinders in a side‐by‐side arrangement, and an array of 18 staggered cylinders, are examined. These benchmark simulations reasonably indicate the reliability and capability of the present method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we present an immersed boundary method for solving fluid flow problems in the presence of static and moving rigid objects. A FEM is used starting from a base mesh that does not represent exactly rigid objects (non?body?conforming mesh). At each time step, the base mesh is locally modified to provide a new mesh fitting the boundary of the rigid objects. The mesh is also locally improved using edge swapping to enhance the quality of the elements. The Navier–Stokes equations are then solved on this new mesh. The velocity of moving objects is imposed through standard Dirichlet boundary conditions. We consider a number of test problems and compare the numerical solutions with those obtained on classical body?fitted meshes whenever possible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Rhie–Chow interpolation is a commonly used method in CFD calculations on a co‐located mesh in order to suppress non‐physical pressure oscillations arising from chequerboard effects. A fully parallelized smoothed‐interface immersed boundary method on a co‐located grid is described in this paper. We discuss the necessity of modifications to the original Rhie–Chow interpolation in order to deal with a locally refined mesh. Numerical simulation with the modified scheme of Choi shows that numerical dissipation due to Rhie–Chow interpolation introduces significant errors at the immersed boundary. To address this issue, we develop an improved Rhie–Chow interpolation scheme that is shown to increase the accuracy in resolving the flow near the immersed boundary. We compare our improved scheme with the modified scheme of Choi by parallel simulations of benchmark flows: (i) flow past a stationary cylinder; (ii) flow past an oscillating cylinder; and (iii) flow past a stationary elliptical cylinder, where Reynolds numbers are tested in the range 10–200. Our improved scheme is significantly more accurate and compares favourably with a staggered grid algorithm. We also develop a scheme to compute the boundary force for the direct‐forcing immersed boundary method efficiently. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
A nodally exact convection–diffusion–reaction scheme developed in Cartesian grids is applied to solve the flow equations in irregular domains within the framework of immersed boundary (IB) method. The artificial momentum forcing term applied at certain points in the flow and inside the body of any shape allows the imposition of no‐slip velocity condition to account for the body of complex boundary. Development of an interpolation scheme that can accurately lead to no‐slip velocity condition along the IB is essential since Cartesian grid lines generally do not coincide with the IB. The results simulated from the proposed IB method agree well with other numerical and experimental results for several chosen benchmark problems. The accuracy and fidelity of the IB flow solver to predict flows with irregular IBs are therefore demonstrated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
This paper describes the Eulerian–Lagrangian boundary element model for the solution of incompressible viscous flow problems using velocity–vorticity variables. A Eulerian–Lagrangian boundary element method (ELBEM) is proposed by the combination of the Eulerian–Lagrangian method and the boundary element method (BEM). ELBEM overcomes the limitation of the traditional BEM, which is incapable of dealing with the arbitrary velocity field in advection‐dominated flow problems. The present ELBEM model involves the solution of the vorticity transport equation for vorticity whose solenoidal vorticity components are obtained iteratively by solving velocity Poisson equations involving the velocity and vorticity components. The velocity Poisson equations are solved using a boundary integral scheme and the vorticity transport equation is solved using the ELBEM. Here the results of two‐dimensional Navier–Stokes problems with low–medium Reynolds numbers in a typical cavity flow are presented and compared with a series solution and other numerical models. The ELBEM model has been found to be feasible and satisfactory. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
YuanYiwu(袁镒吾)(ReceivedOct.2,1994;CommunicatedbyChienWeizang)INTERPOLATIONPERTURBATIONMETHODFORSOLVINGTHEBOUNDARYLAYERTYPEPROB...  相似文献   

13.
In this paper, an immersed boundary method for simulating inviscid compressible flows governed by Euler equations is presented. All the mesh points are classified as interior computed points, immersed boundary points (interior points closest to the solid boundary), and exterior points that are blanked out of computation. The flow variables at an immersed boundary point are determined via the approximate form of solution in the direction normal to the wall boundary. The normal velocity is evaluated by applying the no‐penetration boundary condition, and therefore, the influence of solid wall in the inviscid flow is taken into account. The pressure is computed with the local simplified momentum equation, and the density and the tangential velocity are evaluated by using the constant‐entropy relation and the constant‐total‐enthalpy relation, respectively. With a local coordinate system, the present method has been extended easily to the three‐dimensional case. The present work is the first endeavor to extend the idea of hybrid Cartesian/immersed boundary approach to compressible inviscid flows. The tedious task of handling multi‐valued points can be eliminated, and the overshoot resulting from the extrapolation for the evaluation of flow variables at exterior points can also be avoided. In order to validate the present method, inviscid compressible flows over fixed and moving bodies have been simulated. All the obtained numerical results show good agreement with available data in the literature. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a mixed boundary element formulation of the boundary domain integral method (BDIM) for solving diffusion–convective transport problems. The basic idea of mixed elements is the use of a continuous interpolation polynomial for conservative field function approximation and a discontinuous interpolation polynomial for its normal derivative along the boundary element. In this way, the advantages of continuous field function approximation are retained and its conservation is preserved while the normal flux values are approximated by interpolation nodal points with a uniquely defined normal direction. Due to the use of mixed boundary elements, the final discretized matrix system is overdetermined and a special solver based on the least squares method is applied. Driven cavity, natural and forced convection in a closed cavity are studied. Driven cavity results at Re=100, 400 and 1000 agree better with the benchmark solution than Finite Element Method or Finite Volume Method results for the same grid density with 21×21 degrees of freedom. The average Nusselt number values for natural convection 103Ra≤106 agree better than 0.1% with benchmark solutions for maximal calculated grid densities 61×61 degrees of freedom. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
A complete boundary integral formulation for compressible Navier–Stokes equations with time discretization by operator splitting is developed using the fundamental solutions of the Helmholtz operator equation with different order. The numerical results for wall pressure and wall skin friction of two‐dimensional compressible laminar viscous flow around airfoils are in good agreement with field numerical methods. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
The paper presents a semi‐implicit algorithm for solving an unsteady fluid–structure interaction problem. The algorithm for solving numerically the fluid–structure interaction problems was obtained by combining the backward Euler scheme with a semi‐implicit treatment of the convection term for the Navier–Stokes equations and an implicit centered scheme for the structure equations. The structure is governed either by the linear elasticity or by the non‐linear St Venant–Kirchhoff elasticity models. At each time step, the position of the interface is predicted in an explicit way. Then, an optimization problem must be solved, such that the continuity of the velocity as well as the continuity of the stress hold at the interface. During the Broyden, Fletcher, Goldforb, Shano (BFGS) iterations for solving the optimization problem, the fluid mesh does not move, which reduces the computational effort. The term ‘semi‐implicit’ used for the fully algorithm means that the interface position is computed explicitly, while the displacement of the structure, velocity and the pressure of the fluid are computed implicitly. Numerical results are presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents the linear stability analysis of a round jet in a radially unbounded domain using a spectral Petrov–Galerkin scheme coped with exponential coordinate transformation based on Fornberg's treatment. A Fourier–Chebyshev Petrov–Galerkin spectral method is described for the computation of the linear stability equations based on half a Gauss–Lobatto mesh. Complex basis functions presented here are exponentially mapped as Chebyshev functions, which satisfy the pole condition exactly at the origin, and can be used to expand vector functions efficiently by using the solenoidal condition. The mathematical formulation is presented in detail focusing on the solenoidal vector field used for the approximation of the flow. The scheme provides spectral accuracy in the present cases and the numerical results are in agreement with former works. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a numerical method for solving the two‐dimensional unsteady incompressible Navier–Stokes equations in a vorticity–velocity formulation. The method is applicable for simulating the nonlinear wave interaction in a two‐dimensional boundary layer flow. It is based on combined compact difference schemes of up to 12th order for discretization of the spatial derivatives on equidistant grids and a fourth‐order five‐ to six‐alternating‐stage Runge–Kutta method for temporal integration. The spatial and temporal schemes are optimized together for the first derivative in a downstream direction to achieve a better spectral resolution. In this method, the dispersion and dissipation errors have been minimized to simulate physical waves accurately. At the same time, the schemes can efficiently suppress numerical grid‐mesh oscillations. The results of test calculations on coarse grids are in good agreement with the linear stability theory and comparable with other works. The accuracy and the efficiency of the current code indicate its potential to be extended to three‐dimensional cases in which full boundary layer transition happens. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
20.
A direct‐forcing immersed boundary‐lattice Boltzmann method (IB–LBM) is developed to simulate fluid–particle interaction problems. This method uses the pressure‐based LBM to solve the incompressible flow field and the immersed boundary method to handle the fluid–particle interactions. The pressure‐based LBM uses the pressure distribution functions instead of the density distribution functions as the independent dynamic variables. The main idea is to explicitly eliminate the compressible effect due to the density fluctuation. In the IB method, a direct‐forcing method is introduced to capture the particle motion. It directly computes an IB force density at each lattice grid from the differences between the pressure distribution functions obtained by the LBM and the equilibrium pressure distribution functions computed from the particle velocity. By applying this direct‐forcing method, the IB–LBM becomes a purely LBM version. Also, by applying the Gauss theorem, the formulas for computing the force and the torque acting on the particle from the flows are derived from the volume integrals over the particle volume instead of from the surface integrals over the particle surface. The order of accuracy of the IB–LBM is demonstrated on the errors of velocity field, wall stress, and gradients of velocity and pressure. As a demonstration of the efficiency and capabilities of the new method, sedimentation of a large number of spherical particles in an enclosure is simulated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号