首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fe3O4/ZIF‐8 nanoparticles were synthesized through a room‐temperature reaction between 2‐methylimidazolate and zinc nitrate in the presence of Fe3O4 nanocrystals. The particle size, surface charge, and magnetic loading can be conveniently controlled by the dosage of Zn(NO3)2 and Fe3O4 nanocrystals. The as‐prepared particles show both good thermal stability (stable to 550 °C) and large surface area (1174 m2g?1). The nanoparticles also have a superparamagnetic response, so that they can strongly respond to an external field during magnetic separation and disperse back into the solution after withdrawal of the magnetic field. For the Knoevenagel reaction, which is catalyzed by alkaline active sites on external surface of catalyst, small Fe3O4/ZIF‐8 nanoparticles show a higher catalytic activity. At the same time, the nanocatalysts can be continuously used in multiple catalytic reactions through magnetic separation, activation, and redispersion with little loss of activity.  相似文献   

2.
This mini-review summarizes some novel aspects of reactions conducted in aqueous/organic emulsions stabilized by carbon nanohybrids functionalized with catalytic species. Carbon nanohybrids represent a family of solid catalysts that not only can stabilize water-oil emulsions in the same fashion as Pickering emulsions, but also catalyze reactions at the liquid/liquid interface. Several exam-ples are discussed in this mini-review. They include (a) aldol condensation-hydrodeoxygenation tandem reactions catalyzed by basic (MgO) and metal (Pd) catalysts, respectively; (b) Fischer-Tropsch synthesis catalyzed by carbon-nanotube-supported Ru; and (c) emulsion polymerization of styrene for the production of conductive polymer composites. Conducting these reactions in emul-sion generates important advantages, such as increased liquid/liquid interfacial area that consequently means faster mass transfer rates of molecules between the two phases, effective separation of products from the reaction mixture by differences in the water-oil solubility, and significant changes in product selectivity that can be adjusted by modifying the emulsion characteristics.  相似文献   

3.
A combined experimental and computational study of the ionic‐liquid‐mediated dehydration of glucose and fructose by CrII and CrIII chlorides has been performed. The ability of chromium to selectively dehydrate glucose to 5‐hydroxymethylfurfural (HMF) in the ionic liquid 1‐ethyl‐3‐methyl imidazolium chloride does not depend on the oxidation state of chromium. Nevertheless, CrIII exhibits higher activity and selectivity to HMF than CrII. Anhydrous CrCl2 and CrCl3?6 H2O readily catalyze glucose dehydration with HMF yields of 60 and 72 %, respectively, after 3 h. Anhydrous CrCl3 has a lower activity, because it only slowly dissolves in the reaction mixture. The transformation of glucose to HMF involves the formation of fructose as an intermediate. The exceptional catalytic performance of the chromium catalysts is explained by their unique ability to catalyze glucose to fructose isomerization and fructose to HMF dehydration with high selectivity. Side reactions leading to humins by means of condensation reactions take predominantly place during fructose dehydration. The higher HMF selectivity for CrIII is tentatively explained by the higher activity in fructose dehydration compared to CrII. This limits the concentration of intermediates that are involved in bimolecular condensation reactions. Model DFT calculations indicate a substantially lower activation barrier for glucose isomerization by CrIII compared to CrII. Qualitatively, glucose isomerization follows a similar mechanism for CrII and CrIII. The mechanism involves ring opening of D ‐glucopyranose coordinated to a single Cr ion, followed by a transient self‐organization of catalytic chromium complexes that promotes the rate‐determining hydrogen‐shift step.  相似文献   

4.
An advanced novel magnetic ionic liquid based on imidazolium tagged with ferrocene, a supported ionic liquid, is introduced as a recyclable heterogeneous catalyst. Catalytic activity of the novel nanocatalyst was investigated in one‐pot three‐component reactions of various aldehydes, malononitrile and 2‐naphthol for the facile synthesis of 2‐amino‐3‐cyano‐4H‐pyran derivatives under solvent‐free conditions without additional co‐catalyst or additive in air. For this purpose, we firstly synthesized and investigated 1‐(4‐ferrocenylbutyl)‐3‐methylimidazolium acetate, [FcBuMeIm][OAc], as a novel basic ferrocene‐tagged ionic liquid. This ferrocene‐tagged ionic liquid was then linked to silica‐coated nano‐Fe3O4 to afford a novel heterogeneous magnetic nanocatalyst, namely [Fe3O4@SiO2@Im‐Fc][OAc]. The synthesized novel catalyst was characterized using 1H NMR, 13C NMR, Fourier transform infrared and energy‐dispersive X‐ray spectroscopies, X‐ray diffraction, and transmission and field emission scanning electron microscopies. Combination of some unique characteristics of ferrocene and the supported ionic liquid developed the catalytic activity in a simple, efficient, green and eco‐friendly protocol. The catalyst could be reused several times without loss of activity.  相似文献   

5.
The use of transition‐metal nanoparticles/ionic liquid (IL) as a thermoregulated and recyclable catalytic system for hydrogenation has been investigated under mild conditions. The functionalized ionic liquid was composed of poly(ethylene glycol)‐functionalized alkylimidazolium as the cation and tris(meta‐sulfonatophenyl)phosphine ([P(C6H4m‐SO3)3]3?) as the anion. Ethyl acetate was chosen as the thermomorphic solvent to avoid the use of toxic organic solvents. Due to a cooperative effect regulated by both the cation and anion of the ionic liquid, the nanocatalysts displayed distinguished temperature‐dependent phase behavior and excellent catalytic activity and selectivity, coupled with high stability. In the hydrogenation of α,β‐unsaturated aldehydes, the ionic‐liquid‐stabilized palladium and rhodium nanoparticles exhibited higher selectivity for the hydrogenation of the C?C bonds than commercially available catalysts (Pd/C and Rh/C). We believe that the anion of the ionic liquid, [P(C6H4m‐SO3)3]3?, plays a role in changing the surrounding electronic characteristics of the nanoparticles through its coordination capacity, whereas the poly(ethylene glycol)‐functionalized alkylimidazolium cation is responsible for the thermomorphic properties of the nanocatalyst in ethyl acetate. The present catalytic systems can be employed for the hydrogenation of a wide range of substrates bearing different functional groups. The catalysts could be easily separated from the products by thermoregulated phase separation and efficiently recycled ten times without significant changes in their catalytic activity.  相似文献   

6.
Hypervalent FeV=O species are implicated in a multitude of oxidative reactions of organic substrates, as well as in catalytic water oxidation, a reaction crucial for artificial photosynthesis. Spectroscopically characterized FeV species are exceedingly rare and, so far, were produced by the oxidation of Fe complexes with peroxy acids or H2O2: reactions that entail breaking of the O?O bond to form a FeV=O fragment. The key FeV=O species proposed to initiate the O?O bond formation in water oxidation reactions remained undetected, presumably due to their high reactivity. Here, we achieved freeze quench trapping of six coordinated [FeV=O,(OH)(Pytacn)]2+ (Pytacn=1‐(2′‐pyridylmethyl)‐4,7‐dimethyl‐1,4,7‐triazacyclononane) ( 2 ) generated during catalytic water oxidation. X‐ray absorption spectroscopy (XAS) confirmed the FeV oxidation state and the presence of a FeV=O bond at ≈1.60 Å. Combined EPR and DFT methods indicate that 2 contains a S=3/2 FeV center. 2 is the first spectroscopically characterized high spin oxo‐FeV complex and constitutes a paradigmatic example of the FeV=O(OH) species proposed to be responsible for catalytic water oxidation reactions.  相似文献   

7.
In this study, natural‐based ionic liquid (IL) using caffeine (Caff), trietahnolamine (TEA) and ZnBr2, [Caff‐TEA]+[ZnBr3]?, which features high catalytic activity and environmentally‐friendly nature was synthesized with melting point of 76 °C by a facile method. The synthesized [Caff‐TEA]+[ZnBr3]? has high catalytic activity as both of catalyst and solvent in condensation reactions for the synthesis of benzylidenes, bis‐hydroxyenones and xanthenes. Synthesized IL was characterized by proton nuclear magnetic resonance (1HNMR), Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD) and Energy‐dispersive X‐ray spectroscopy (EDX) analysis. Also synthesized heterocycles were characterized by FT‐IR, proton nuclear magnetic resonance (1HNMR) and carbon nuclear magnetic resonance (13CNMR).  相似文献   

8.
Globally, efficient oil‐water separation for surfactant‐stabilized oil‐water emulsions has been in urgent demand. The current options available for separation are neither sustainable nor resistant to fouling. Herein, we introduce a hierarchically nanostructured TiO2/Fe2O3 composite membrane, which is capable of separating surfactant‐stabilized oil‐water emulsions with high separation efficiency. The high oil rejection rate is contributed by the acquisition of an interconnected delicate network and underwater superoleophobic interface. Meanwhile, its self‐cleaning function promote the facile recovery of the contaminated membrane. Furthermore, the mechanical flexible characteristic of the TiO2/Fe2O3 composite membrane widens its applicability in industrial employment. Thanks to these properties, this novel membrane can be considered as a practical option for treating surfactant‐stabilized oil‐water emulsions.  相似文献   

9.
The activation of O2 is a key step in selective catalytic aerobic oxidation reactions mediated by transition metals. The bridging trinuclear palladium species, [(LPdII)33‐O)2]2+ (L=2,9‐dimethylphenanthroline), was identified during the [LPd(OAc)]2(OTf)2‐catalyzed aerobic oxidation of 1,2‐propanediol. Independent synthesis, structural characterization, and catalytic studies of the trinuclear compound show that it is a product of oxygen activation by reduced palladium species and is a competent intermediate in the catalytic aerobic oxidation of alcohols. The formation and catalytic activity of the trinuclear Pd3O2 species illuminates a multinuclear pathway for aerobic oxidation reactions catalyzed by Pd complexes.  相似文献   

10.
The catalytic activity of magnetically recoverable MIL‐101 was investigated in the oxidation of alkenes to carboxylic acids and cyanosilylation of aldehydes. MIL‐101 was treated with Fe3O4 and the prepared catalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, N2 adsorption measurements, field emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy and inductively coupled plasma analysis. The catalytic active sites in this heterogeneous catalyst are Cr3+ nodes of the MIL‐101 framework. This heterogeneous catalyst has the advantages of excellent yields, short reaction times and reusability several times without significant decrease in its initial activity and stability in both oxidation and cyanosilylation reactions. Its magnetic property allows its easy separation using an external magnetic field.  相似文献   

11.
Mesoporous monolithic hybrid cellulose‐2.5‐acetate (CA)/polymer supports were prepared under solvent‐induced phase separation conditions using cellulose‐2.5‐acetate microbeads 8–14 μm in diameter, 1,1,1‐tris(hydroxymethyl)propane and 4,4′‐methylenebis(phenylisocyanate) as monomers as well as THF and n‐heptane as porogenic solvents. 4‐(Dimethylamino)pyridine and dibutyltin dilaurate (DBTDL), respectively, were used as catalysts. Monolithic hybrid supports were used in transesterification reactions of vinyl butyrate with 1‐butanol under continuous, supported ionic liquid–liquid conditions with Candida antarctica lipase B (CALB) and octylmethylimidazolium tetrafluoroborate ([OMIM+][BF4?]) immobilized within the CA beads inside the polymeric monolithic framework and methyl tert‐butyl ether (MTBE) as the continuous phase. The new hybrid bioreactors were successfully used in dimensions up to 2×30 cm (V=94 mL). Under continuous biphasic liquid–liquid conditions a constant conversion up to 96 % was achieved over a period of 18 days, resulting in a productivity of 58 μmol mg?1(CALB) min?1. This translates into an unprecedented turnover number (TON) of 3.9×107 within two weeks, which is much higher than the one obtained under standard biphasic conditions using [OMIM+][BF4?]/MTBE (TON=2.7×106). The continuous liquid–liquid setup based on a hybrid reactor presented here is strongly believed to be applicable to many other enzyme‐catalyzed reactions.  相似文献   

12.
A sustainable D ‐glucosamine ligand is successfully introduced into iron‐catalysed C ? C cross‐coupling reactions for the first time. The Fe(acac)2/D ‐glucosamine·HCl/Et3N catalytic system was effective at 5 mol% loading in coupling reactions of Grignard reagents with organic bromides. Moderate to high efficiency was achieved with preserved stereochemistry when allyl (Csp3) or alkenyl (Csp2) bromides were coupled with phenylmagnesium (Csp2) or benzylmagnesium (Csp3) bromides. The catalytic system developed was also successfully applied for the novel and economic preparation of a Michael‐acceptor‐like starting material used in an alternative synthesis of the drug sitagliptin, a known blockbuster for the treatment of type II diabetes mellitus. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Indirect ultraviolet detection was conducted in ultraviolet‐absorption‐agent‐added mobile phase to complete the detection of the absence of ultraviolet absorption functional group in analytes. Compared with precolumn derivatization or postcolumn derivatization, this method can be widely used, has the advantages of simple operation and good linear relationship. Chromatographic separation of Li+, Na+, K+, and NH4+ was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid/organic solvent as the mobile phase, in which imidazolium ionic liquids acted as ultraviolet absorption reagent and eluting agent. The retention behaviors of four kinds of cations are discussed, and the mechanism of separation and detection are described. The main factors influencing the separation and detection were the background ultraviolet absorption reagent and the concentration of hydrogen ion in the ion chromatography‐indirect ultraviolet detection. The successful separation and detection of Li+, Na+, K+, and NH4+ within 13 min was achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.02, 0.11, 0.30, and 0.06 mg/L, respectively. A new separation and analysis method of alkali metal ions and ammonium by ion chromatography with indirect ultraviolet detection method was developed, and the application range of ionic liquid was expanded.  相似文献   

14.
A carbon fiber paste electrode using ionic liquid as the binder (CFILE) was fabricated. The electrochemical characteristics of the electrode was examined in ferro‐/ferricyanide solution and showed better conductivity and reversibility when compared with graphite paste‐ionic liquid electrode (GPILE) and a little better than that on the carbon nanotube paste‐ionic liquid electrode (CNTILE). Glyphosate (GLY), a pesticide, exhibited excellent catalysis to the oxidation of Ru(bpy)2+3 on CFILE and brought an obvious enhancement to the electrochemiluminescence (ECL) intensity of Ru(bpy)2+3. Based on the catalytic ability of GLY, a simple ECL method for GLY detection had been established. Under optimum conditions, the enhanced ECL intensities were found to had linearly respond to the GLY concentration between 3.0×10?7 and 3.0×10?5 mol/L, and the detection limit (S/N=3) was 2.0×10?7 mol/L. The electrode also showed excellent sensitivity in detecting GLY‐spiked soybean samples. The linear range for GLY in soybean samples was 1.0×10?6–4.0×10?5 mol/L and the detection limit was 5.0×10?7 mol/L, equal to 8.45 µg GLY in per gram of soybean. The detection limit in soybean sample was lower than the USA, EU regulation and so on. If the method is coupled with the separation technology, it can be applied to detect the GLY in the contaminated samples.  相似文献   

15.
The complexes [Ni2(L)2]2 · H2O ( 1 ) and [Cu2(L)2(H2O)] · 2CH3OH ( 2 ) were prepared by reaction of the chiral Schiff base ligand N‐[(1R,2S)‐2‐hydroxy‐1,2‐diphenyl]‐acetylacetonimine (H2L) with NiII and CuII ions, respectively, aiming to develop economically and environmentally‐friendly catalysts for the hydrogenation of ketones. They have a dinuclear skeleton with axial vacant sites. The catalytic effects of the two complexes for hydrogenation of ketones were tested using dihydrogen gas as hydrogen source. They present some catalytic effects in hydrogenation of acetophenone, which has a dependence on the temperature and base used in these reactions. However, no apparent catalytic effects were found for the two complexes in hydrogenation of 4‐nitroacetophenone and 4‐methylacetophenone. Although the catalytic conversion in these hydrogenation reactions is low, they do represent a kind of cheap and environmentally‐friendly hydrogenation catalyst.  相似文献   

16.
A facile, efficient and green photochemical synthetic approach has been used to prepare sponge‐like porous Pd nanoparticles. Obtained by ultraviolet irradiation using a K2PdCl4 precursor solution, the final products exhibited three dimensionally interconnected porous structures made up of ~3.6 nm sized Pd nanoparticles. In situ liquid cell TEM results indicated such porous structures are in a dynamic stable state when the particles are distributed in aqueous solution. The porous Pd nanoparticles exhibited electrochemical active surface area (ECSA) of up to 43 m2·g–1 and mass activity of 1144 mA·mg–1 in menthol oxidation, kapp of 0.22 min–1 and normalized kapp/m (kn) of 8.3×104 min–1·g–1 in 4‐nitrophenol (4‐NP) reduction reactions. Comparing with the literature, it is demonstrated that our porous Pd nanoparticles with clean surfaces exhibited very high catalytic performances. This work may shed a light on facile and green synthesis of noble‐metal particles with better catalytic performances.  相似文献   

17.
We report the first tunable bifunctional surface of silica–alumina‐supported tertiary amines (SA–NEt2) active for catalytic 1,4‐addition reactions of nitroalkanes and thiols to electron‐deficient alkenes. The 1,4‐addition reaction of nitroalkanes to electron‐deficient alkenes is one of the most useful carbon–carbon bond‐forming reactions and applicable toward a wide range of organic syntheses. The reaction between nitroethane and methyl vinyl ketone scarcely proceeded with either SA or homogeneous amines, and a mixture of SA and amines showed very low catalytic activity. In addition, undesirable side reactions occurred in the case of a strong base like sodium ethoxide employed as a catalytic reagent. Only the present SA‐supported amine (SA–NEt2) catalyst enabled selective formation of a double‐alkylated product without promotions of side reactions such as an intramolecular cyclization reaction. The heterogeneous SA–NEt2 catalyst was easily recovered from the reaction mixture by simple filtration and reusable with retention of its catalytic activity and selectivity. Furthermore, the SA–NEt2 catalyst system was applicable to the addition reaction of other nitroalkanes and thiols to various electron‐deficient alkenes. The solid‐state magic‐angle spinning (MAS) NMR spectroscopic analyses, including variable‐contact‐time 13C cross‐polarization (CP)/MAS NMR spectroscopy, revealed that acid–base interactions between surface acid sites and immobilized amines can be controlled by pretreatment of SA at different temperatures. The catalytic activities for these addition reactions were strongly affected by the surface acid–base interactions.  相似文献   

18.
A nickel‐catalyzed methylation of aryl halides with cheap and readily available CH3I or CD3I is described. The reaction is applicable to a wide range of substrates and allows installation of a CD3 group under mild reaction conditions without deuterium scrambling to other carbon atoms. Initial mechanistic studies on the stoichiometric and catalytic reactions of the isolated [(dppp)Ni(C6H4‐4‐CO2Et)Br] [dppp=1,3‐bis(diphenylphosphanyl)propane] suggest that a Ni0/NiII catalytic cycle is favored.  相似文献   

19.
Gas–liquid mass transfer of gaseous reactants is a major limitation for high space–time yields, especially for O2‐dependent (bio)catalytic reactions in aqueous solutions. Herein, oxygenic photosynthesis was used for homogeneous O2 supply via in situ generation in the liquid phase to overcome this limitation. The phototrophic cyanobacterium Synechocystis sp. PCC6803 was engineered to synthesize the alkane monooxygenase AlkBGT from Pseudomonas putida GPo1. With light, but without external addition of O2, the chemo‐ and regioselective hydroxylation of nonanoic acid methyl ester to ω‐hydroxynonanoic acid methyl ester was driven by O2 generated through photosynthetic water oxidation. Photosynthesis also delivered the necessary reduction equivalents to regenerate the Fe2+ center in AlkB for oxygen transfer to the terminal methyl group. The in situ coupling of oxygenic photosynthesis to O2‐transferring enzymes now enables the design of fast hydrocarbon oxyfunctionalization reactions.  相似文献   

20.
Supported ruthenium hydroxide catalysts (Ru(OH)x/support) were prepared with three different TiO2 supports (anatase TiO2 (TiO2(A), BET surface area: 316 m2 g?1), anatase TiO2 (TiO2(B), 73 m2 g?1), and rutile TiO2 (TiO2(C), 3.2 m2 g?1)), as well as an Al2O3 support (160 m2 g?1). Characterizations with X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), electron spin resonance (ESR), and X‐ray absorption fine structure (XAFS) showed the presence of monomeric ruthenium(III) hydroxide and polymeric ruthenium(III) hydroxide species. Judging from the coordination numbers of the nearest‐neighbor Ru atoms and the intensities of the ESR signals, the amount of monomeric hydroxide species increased in the order of Ru(OH)x<Ru(OH)x/TiO2(C)<Ru(OH)x/Al2O3<Ru(OH)x/TiO2(B)<Ru(OH)x/TiO2(A). These supported ruthenium hydroxide catalysts, especially Ru(OH)x/TiO2(A), showed high catalytic activities and selectivities for liquid‐phase hydrogen‐transfer reactions, such as racemization of chiral secondary alcohols and the reduction of carbonyl compounds and allylic alcohols. The catalytic activities of Ru(OH)x/TiO2(A) for these hydrogen‐transfer reactions were at least one order of magnitude higher than those of previously reported heterogeneous catalysts, such as Ru(OH)x/Al2O3. These catalyses were truly heterogeneous, and the catalysts recovered after the reactions could be reused several times without loss of catalytic performance. The reaction rates monotonically increased with an increase in the amount of monomeric ruthenium hydroxide species, which suggests that the monomeric species are effective for these hydrogen‐transfer reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号