首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A complex radical ionic salt,N-(β-iodoethyl)pyridinium bis (7,7′, 8,8′-tetracyanoquinodimethanide), (C7H9IN)+·(TCNQ)??·(TCNQ), where TCNQ is 7,7′, 8,8′-tetracyanoquinodimethane, was synthesized and studied by X-ray structural analysis. The crystal structure of the complex consists of layers. Layers of (C7H9IN)+ cations alternate with layers of TCNQ molecules packed in stacks. Shortened intermolecular contacts occur in stacks of TCNQ and between cationic and anionic layers.  相似文献   

2.
The encapsulation of tetracyanoquinodimethane (TCNQ) and fluorescent probe acridinium ions (AcH+) by diethylpyrrole‐bridged bisporphyrin (H4DEP) was used to investigate the structural and spectroscopic changes within the bisporphyrin cavity upon substrate binding. X‐ray diffraction studies of the bisporphyrin host (H4DEP) and the encapsulated host–guest complexes (H4DEP ? TCNQ and [H4DEP ? AcH]ClO4) are reported. Negative and positive shifts of the reduction and oxidation potentials, respectively, indicated that it was difficult to reduce/oxidize the encapsulated complexes. The emission intensities of bisporphyrin, upon excitation at 560 nm, were quenched by about 65 % and 95 % in H4DEP ? TCNQ and [H4DEP ? AcH]ClO4, respectively, owing to photoinduced electron transfer from the excited state of the bisporphyrin to TCNQ/AcH+; this result was also supported by DFT calculations. Moreover, the fluorescence intensity of encapsulated AcH+ (excited at 340 nm) was also remarkably quenched compared to the free ions, owing to photoinduced singlet‐to‐singlet energy transfer from AcH+ to bisporphyrin. Thus, AcH+ acted as both an acceptor and a donor, depending on which part of the chromophore was excited in the host–guest complex. The electrochemically evaluated HOMO–LUMO gap was 0.71 and 1.42 eV in H4DEP ? TCNQ and [H4DEP ? AcH]ClO4, respectively, whilst the gap was 2.12 eV in H4DEP. The extremely low HOMO–LUMO gap in H4DEP ? TCNQ led to facile electron transfer from the host to the guest, which was manifested in the lowering of the CN stretching frequency (in the solid state) in the IR spectra, a strong radical signal in the EPR spectra at 77 K, and also the presence of low‐energy bands in the UV/Vis spectra (in the solution phase). Such an efficient transfer was only possible when the donor and acceptor moieties were in close proximity to one another.  相似文献   

3.
Supported bilayer lipid membrane (s‐BLM) containing one‐dimensional compound 1, TCNQ‐based (TCNQ=7,7,8,8‐tetracyanoquinodimethane) organometallic compound {(Cu2(μ‐Cl)(μ‐dppm)2)(μ2‐TCNQ)}, was prepared and characterized on the self‐assembled monolayer (SAM) of 1‐octadecylmercaptan (C18H37SH) deposited onto Au electrode. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) results showed that the compound 1, dotted inside s‐BLM, can act as mediator for electron transfer across the membrane. Two redox peaks and the charge‐transfer resistance of 400 kΩ were observed for compound 1 inside s‐BLM. The mechanism of the electron transfer across s‐BLM by TCNQ is by electron hopping while TCNQ‐based organometallic compound is by conducting. Further conclusion drawn from this finding is that the TCNQ‐based organometallic compound embedded inside s‐BLM exhibits excellent electron transfer ability than that of free TCNQ. This opens a new path for the development of s‐BLM sensor and/or biosensor by incorporation with TCNQ‐based organometallic compounds.  相似文献   

4.
The reported Raman spectrum of the Rb TCNQ salt allows, for the first time, examination of all the vibrational features of the TCNQ ? radical anion. The knowledge of the TCNQ fundamental frequencies as well as of those for neutral TCNQ makes it possible to interpret the infrared and Raman spectra of Cs2 (TCNQ)3 and to conclude that in this salt both neutral and negatively charged TCNQ units are present in the crystal. The result is a first fruitful application of vibrational spectroscopy to the study of complex TCNQ salts, opening the way to an extensive investigation of TCNQ semiconducting salts.  相似文献   

5.
A radical salt 1, [Cu3(dppm)3(μ 3-I)2][(0.5TCNQ)], has been prepared by reaction of CuI, dppm (diphenylphosphinomethane) and TCNQ (7,7′,8,8′-tetracyanoquinodimethane) with a molar ratio of 1 : 1 : 0.5 and characterized by IR, UV–Vis and solid-emission spectroscopy. Its structure was determined by X-ray crystallography. 1 also has photoluminescence (λ max = 653 nm) at room temperature. Magnetic properties indicate that TCNQ is in the reduced state (TCNQ2?).  相似文献   

6.
Reactions of the main‐group cation TlI with anions of 2,5‐derivatives of TCNQ (TCNQ=7,7,8,8‐tetracyanoquinodimethane) have led to the isolation of a family of unprecedented semiconducting main‐group‐metal–organic frameworks, namely, [Tl(TCNQX2)], (X=H, Cl, Br, I). A comparison of single‐crystal and powder X‐ray diffraction data revealed the existence of a third polymorph of the previously reported material Tl(TCNQ)] and two distinct polymorphs of [Tl(TCNQCl2)], whereas only one phase was identified for [Tl(TCNQBr2)] and [Tl(TCNQI2)]. These new results are described in the context of the structures of other known binary metal–TCNQ frameworks that display a variety of coordination environments for the central cation, namely, four‐, six‐, and eight‐coordinate, and different arrangements of the adjacent TCNQ radicals—parallel versus perpendicular—in the stacked columns. The halogen substituents affect the structures and the properties of these compounds, owing to both steric and electronic effects as evidenced by the semiconducting properties of crystals of [Tl(TCNQCl2)] phase I, [Tl(TCNQBr2)], and [Tl(TCNQI2)], which correlate well with the distances of adjacent TCNQ radicals in the columns. 1D infinite Hückel model simulations of the band structures of [Tl(TCNQCl2)] phase I, [Tl(TCNQBr2)], and [Tl(TCNQI2)] were conducted with and without consideration of the TlI cations, the results of which indicate that the charge mobility does not strictly occur in one dimension. The modulations of the band structures with various assumptions of the energy difference (Δ) between the TlI 6s orbital and the TCNQ LUMO orbital were calculated and are discussed in light of the observed properties.  相似文献   

7.
Bis(triphenylphosphoranylidene)ammonium iodide (PPN+I?) forms a 2:3 complex with TCNQ [(PPN)2(TCNQ)3(CH3CN)2] that provides an example of a TCNQ complex containing acetonitrile in the crystal lattice; the material is a semi-conductor with trimerised TCNQ stacks.  相似文献   

8.
Microstructured sheets of semiconducting Ca[TCNQ]2 (TCNQ = 7,7,8,8-tetracyanoquinodimethane) have been synthesized via electrochemically driven (TCNQ)/Ca[TCNQ]2 solid-solid phase transformation that occurs upon one-electron reduction of solid TCNQ, mechanically attached to an electrode surface, in the presence of an aqueous Ca2+ (aq) electrolyte solution. Voltammetric probing of the electrochemically irreversible TCNQ/Ca[TCNQ]2 interconversion revealed that it is highly dependent on scan rate and Ca2+ (aq) electrolyte concentration. This voltammetric behavior, supported by double potential-step chronoamperometric evidence, clearly attests that formation of Ca[TCNQ]2 takes place via a rate-determining nucleation/growth process, which involves ingress of Ca2+ (aq) cations into the TCNQ·? crystal lattice at the triple phase TCNQ/TCNQ·? (s)│GC(s)│Ca2+ (aq) electrolyte junction. The overall redox process associated with this chemically reversible solid-solid transformation can be described by the equation: TCNQ0 (S)?+?2e??+?Ca2+ (aq) ? {Ca[TCNQ]2}(S). SEM characterization of the morphology of the generated Ca[TCNQ]2 material showed the formation of microstructured sheets, which are substantially different from those of parent TCNQ crystals and the needle-shaped crystals of group I cations (M+?=?Li, Na, K, Rb, and Cs). The kinetic and thermodynamic implications of the ΔE p and E m values as a function of scan rate are discussed in terms of nucleation–growth and their relevance to those reported for the conceptually related group I cations and binary M[TCNQ]2 (M2+?=?Mn, Fe, Co, and Ni)-based coordination polymers.  相似文献   

9.
A series of ferrocenylaldimines (Fc-CH=N-R) has been prepared by Schiff base condensation of formylferrocene with polyacenylamines RNH2 where R = naphthyl, 5,6,7,8-tetrahydronaphthyl, anthracenyl, and pyrenyl groups. This step was followed by oxidation with TCNQ to give [Fc-CH = N-R][TCNQ]2 salts. The electronic state of iron in these compounds was investigated by means of57Fe Mössbauer spectroscopy.  相似文献   

10.
电荷转移配合物薄膜制备方法和结构表征的研究进展   总被引:1,自引:0,他引:1  
回顾了与Langmuir-Blodgett(LB)技术有关的电荷转移配合物薄膜的各类制备方法、结构表征结果,并比较了制备方法对薄膜结构的影响.例如,将LB膜C18H37TCNQ(电子受体)插入到电子给体3,3’,5,5’-tetramethylbenzidine(四甲基联苯胺, TMB)的石油醚溶液中进行掺杂,制备了TMB•C18H37TCNQ电荷转移配合物薄膜.在这种薄膜中,给体和受体以面对面的方式堆积,两者的环平面与基片平面接近垂直.而采用硬脂酸和C18H37TCNQ的混合LB膜通过类似的掺杂路线制备的TMB•C18H37TCNQ薄膜的结构发生了一些变化,例如其长的烃链C18H37更加垂直于基片平面.通过比较以前的各种实验结果可以得出以下结论:电荷转移配合物的结构可以通过制备方法得到控制.  相似文献   

11.
Reactions between nickel(II) and copper(II) salts [M(L) n ](ClO4)2 [L: 2-(pyrazole-1-ylmethyl)pyridine; n = 3 for Ni(II) and n = 2 for Ni(II) and Cu(II)] and LiTCNQ or mixture of LiTCNQ/TCNQ and Et3NH(TCNQ)2 yielded [Ni(L)3](TCNQ)2 · H2O, [Ni(L)2(TCNQ)2], [Ni(L)3](TCNQ)3, [Ni(L)2(TCNQ)3], and [Cu(L)2(TCNQ)3] · 3H2O. These complexes were characterized by infrared, electronic absorption, variable temperature magnetic moments and electron paramagnetic studies. Magnetic moments increase with increase in temperature attributed to contribution from TCNQ, which has also been examined by electron paramagnetic resonance.  相似文献   

12.
A generic method for the synthesis of metal-7,7,8,8-tetracyanoquinodimethane (TCNQ) charge-transfer complexes on both conducting and nonconducting substrates is achieved by photoexcitation of TCNQ in acetonitrile in the presence of a sacrificial electron donor and the relevant metal cation. The photochemical reaction leads to reduction of TCNQ to the TCNQ(-) monoanion. In the presence of M(x+)(MeCN), reaction with TCNQ(-)(MeCN) leads to deposition of M(x+)[TCNQ]x crystals onto a solid substrate with morphologies that are dependent on the metal cation. Thus, CuTCNQ phase I photocrystallizes as uniform microrods, KTCNQ as microrods with a random size distribution, AgTCNQ as very long nanowires up to 30 mum in length and with diameters of less than 180 nm, and Co[TCNQ](2)(H(2)O)(2) as nanorods and wires. The described charge-transfer complexes have been characterized by optical and scanning electron microscopy and IR and Raman spectroscopy. The CuTCNQ and AgTCNQ complexes are of particular interest for use in memory storage and switching devices. In principle, this simple technique can be employed to generate all classes of metal-TCNQ complexes and opens up the possibility to pattern them in a controlled manner on any type of substrate.  相似文献   

13.
Langmuir-Blodgett (LB) films of N-docosylpyridinium-TCNQ (NDP-TCNQ) were prepared in air. The films deposited at the room temperature showed in-plane conductivity of 4×10-3 S.cm-1 and its absorption spectra in UV and IR regions resembled those for the films composed of mixed-valence TCNQ salts of NDP-(TCNQ)2 rather than for the NDP-TCNQ LB films preparaed under protection of nitrogen. In the case that the films left in a warm environment after each dipping cycle, the absorption in the corresponding region changed. Spectral analysis and XPS study revealed that more TCNQ molecules were produced. The oxidation of TCNQ- in air was considered to be the origin of neutral TCNQ formed.  相似文献   

14.
Ten types of neutral charge transfer (CT) complexes of coronene (electron donor; D) were obtained with various electron acceptors (A). In addition to the reported 7,7,8,8‐tetracyanoquinodimethane (TCNQ) complex of 1:1 stoichiometry with a DA‐type alternating π column, TCNQ also afforded a 3:1 complex, in which a face‐to‐face dimer of parallel coronenes ( Cor‐A s) is sandwiched between TCNQs to construct a DDA‐type alternating π column flanked by another coronene ( Cor‐B ). Whereas solid‐state 2H NMR spectra of the 1:1 TCNQ complex formed with deuterated coronene confirmed the single in‐plane 6‐fold flipping motion of the coronenes, two unsynchronized motions were confirmed for the 3:1 TCNQ complex, which is consistent with a crystallographic study. Neutral [Ni(mnt)2] (mnt: maleonitriledithiolate) as an electron acceptor afforded a 5:2 complex with a DDA‐type alternating π column flanked by another coronene, similar to the 3:1 TCNQ complex. The fact that the Cor‐A s in the [Ni(mnt)2] complex arrange in a non‐parallel fashion must cause the fast in‐plane rotation of Cor‐A relative to that of Cor‐B . This is in sharp contrast to the 3:1 TCNQ complex, in which the dimer of parallel Cor‐A s shows inter‐column interactions with neighboring Cor‐A s. The solid‐state 1H NMR signal of the [Ni(mnt)2] complex suddenly broadens at temperatures below approximately 60 K, indicating that the in‐plane rotation of the coronenes undergoes down to approximately 60 K; the rotational rate reaches the gigahertz regime at room temperature. Rotational barriers of these CT complexes, as estimated from variable‐temperature spin–lattice relaxation time (T1) experiments, are significantly lower than that of pristine coronene. The investigated structure–property relationships indicate that the complexation not only facilitates the molecular rotation of coronenes but also provides a new solid‐state rotor system that involves unsynchronized plural rotators.  相似文献   

15.
The chemical and electrical stabilities of 7,7,8,8-tetracyanoquinodimethane (TCNQ) salts composed of neutral TCNQ (TCNQ?), anion radicals of TCNQ(TCNQ?·), and polycation polymers were studied by measuring their electronic spectra and resistivities (ρ). The results of spectral and chemical analyses confirmed that TCNQ?· in TCNQ salts was decomposed to α,α-dicyano-p-toluoylcyanide (DTC?) as the final product by the intermediate formation of TCNQ? and p-phenylenediamalononitrile (H2TCNQ) and that H2O played an important part in the reaction. From these results it was concluded that TCNQ salts are decomposed by two reaction processes: The resistivity of TCNQ salts increases with the decomposition of TCNQ?·. Studies on electroconductivity of TCNQ salts assume that the change in resistivity arises from the loss of unpaired electrons which become conduction carriers and also from the disintegration of the TCNQ? and TCNQ?· complex which forms the conduction path.  相似文献   

16.
Facile synthesis and characterization of the highly conducting, thermodynamically favored, Tl(TCNQ) phase II microrods/nanorods onto conducting (glassy carbon (GC)) and semiconducting (indium tin oxide (ITO)) surfaces have been accomplished via redox-based transformation of 7,7,8,8-tetracynoquinodimethane (TCNQ) microcrystals. This electrochemically irreversible process involves the one-electron reduction of surface-confined solid TCNQ into TCNQ·? with concomitant incorporation of the Tl+ (aq) cation, from the bulk solution, at the triple-phase boundary, GC or ITO│(TCNQ(s)/TCNQ·? (s))│Tl+ (aq), through a nucleation/growth mechanism. Consistent with the conceptually related M(TCNQ) systems (M+ = Li+, Na+, K+, Ag+, and Cu+), the TCNQ/Tl(TCNQ) interconversion is strongly dependent upon scan rate, Tl+ (aq) electrolyte concentration, and the method of attaching solid TCNQ onto the electrode surface. Spectroscopic (infrared (IR) and Raman), microscopic (scanning electron microscopy (SEM)), and surface science (X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD)) characterization of the electrochemically synthesized material revealed formation of pure Tl(TCNQ) phase II. Importantly, the generic solid-state electrochemical approach used in this study not only offers facile protocol for controllable and preferential synthesis of Tl(TCNQ) phase II but also provides access to fabricate and tune the morphology to yield microrod/nanorod networks.
Graphical abstract Controlled synthesis of the highly conducting Tl(TCNQ) phase II with either nanowire or rod-like morphologies is achieved via a redox-based solid-solid phase interconversion of TCNQ microcrystals in the presence of a Tl+ (aq) electrolyte.
  相似文献   

17.
The reaction of Fe(OAc)2 and Hbpypz with neutral TCNQ results in the formation of [Fe2(bpypz)2(TCNQ)2](TCNQ)2 ( 1 ), in which Hbpypz=3,5-bis(2-pyridyl)pyrazole and TCNQ=7,7′,8,8′-tetracyano-p-quinodimethane. Crystal packing of 1 with uncoordinated TCNQ and π–π stacking of bpypz ligands produces an extended two-dimensional supramolecular coordination assembly. Temperature dependence of the dc magnetic susceptibility and heat capacity measurements indicate that 1 undergoes an abrupt spin crossover (SCO) with thermal spin transition temperatures of 339 and 337 K for the heating and cooling modes, respectively, resulting in a thermal hysteresis of 2 K. Remarkably, the temperature dependence of dc electrical transport exhibits a transition that coincides with thermal SCO, demonstrating the thermally induced magnetic and electrical bistability of 1 , strongly correlating magnetism with electrical conductivity. This outstanding feature leads to thermally induced simultaneous switching of magnetism and electrical conductivity and a magnetoresistance effect.  相似文献   

18.
A new bis‐TTF donor (TTF is tetrathiafulvalene) containing a pyridine diester spacer, namely bis{2‐[(6,7‐tetramethylene‐3‐methylsulfanyltetrathiafulvalen‐2‐yl)sulfanyl]ethyl} pyridine‐2,6‐dicarboxylate–tetracyanoquinodimethane–dichloromethane (2/1/2), 2C33H33NO4S12·C12H4N4·2CH2Cl2, has been synthesized and its electron‐donating ability determined by cyclic voltammetry. The electrical conductivity and crystal structure of this donor–acceptor (DA) complex with TCNQ (tetracyanoquinodimethane) as the acceptor are presented. The TCNQ moiety lies across a crystallographic inversion centre. In the crystal structure, TTF and TCNQ entities are arranged in alternate stacks; this feature, together with the bond lengths of the TCNQ molecule, suggest that the expected charge transfer has not occurred and that the D and A entities are in the neutral state, in agreement with the poor conductivity of the material (σRT = 2 × 10−6 S cm−1).  相似文献   

19.
Tetracyanoquinodimethane (TCNQ) electrode material has achieved excellent performance in aqueous zinc-ion batteries (AZIBs). However, fundamental understanding about effect of substitutes on electrochemical performance of TCNQ remain unknown. In this work, the effects of fluorine (F) as an electron-absorbing group on the structure, morphology and electrochemical performance of TCNQ and storage mechanism of TCNQ in AZIBs are discussed. Theoretical calculation proves that the introduction of fluorine atoms decreases lowest unoccupied molecular orbital (LUMO) energy of TCNQ thus affect the redox potential. Electrochemical performance of TCNQ/Fluoro-7,7,8,8-tetracyanoquinodimethane (FTCNQ)/2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) is evaluated from 25 °C to −20 °C in AZIBs. Results tend out that with the increasing substituents of F on TCNQ molecular, their stability in AZIBs decrease. Dipole moment calculation further shows that the introduction of fluorine atoms is inconducive to the stability of the electrode material in aqueous solution. Ex-situ characterization demonstrate that electron withdrawing groups do not change the REDOX center of TCNQ electrode materials. Our work provides a new thought for the selection of the electrode material in AZIBs.  相似文献   

20.
The force field for the in-plane vibrations of TCNQ and TCNQ-d4, has been calculated by the iterative self consistent method of Koptev et al. (Opt. Spektrosk., 25 (1968) 350). With the new set of force constants an improved matching was obtained between the observed and calculated vibration frequencies in TCNQ and TCNQ-d4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号