首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ab initio EOM‐CCSD calculations were performed to determine 19F,1H, 19F,15N and 1H,15N spin–spin coupling constants in model complexes FH–NH3 and FH–pyridine as a function of the F—H and F—N distances. The absolute value of 1J(F,H) decreases and that of 1hJ(H,N) increases rapidly along the proton‐transfer coordinate, even in the region of the proton‐shared F—H—N hydrogen bond. In contrast, 2hJ(F,N) remains essentially constant in this region. These results are consistent with the recently reported experimental NMR spectra of FH–collidine which show that 1hJ(H,N) increases and 1J(F,H) decreases, while 2hJ(F,N) remains constant as the temperature of the solution decreases. They suggest that the FH–collidine complex is stabilized by a proton‐shared hydrogen bond over the range of experimental temperatures investigated, being on the traditional side of quasi‐symmetric at high temperatures, and on the ion‐pair side at low temperatures. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
The configuration of certain trifluoromethylated functional dienoates, aryldienoates and trienoates is presented by the measurement of their 13C NMR and 19F NMR chemical shifts, and their 3 J(C–F), 4J(H–F) and through‐space 5J(H–F) coupling constants. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
The title compounds 1‐(2‐naphthyloxymethylcarbonyl)piperidine, C17H19NO2, (I), and 3‐methyl‐1‐(2‐naphthyl­oxy­methyl­carbonyl)­piperidine, C18H21NO2, (II), are potential antiamnesics. In (II), the methyl‐substituted piperidine ring is disordered over two conformations. The piperidine ring has a chair conformation in both compounds. In (I), the mol­ecules are linked by weak intermolecular C—H⃛O interactions to give networks represented by C(4), C(6) and (18) graph‐set motifs, while in (II), weak intermolecular C—H⃛O interactions generate (5), C(4) and C(7) graph‐set motifs. The dihedral angle between the naphthalene moiety and the piperidine ring is 33.83 (7)° in (I), while it is 31.78 (11) and 19.38 (19)° for the major and minor conformations, respectively, in (II).  相似文献   

4.
J(13C1H) coupling constants for some methyl- and aminopyrimidines have been determined by 13C NMR. Both the one-bond and long-bond and long-range coupling constants follow general trends which can be summarized in a few simple rules. In particular, the 3J(C-i,H) coupling constants between a ring carbon C-i and the ring protons are larger than the 2J(C-i,H) coupling constants. The opposite is observed for the couplings between the ring carbons and the methyl protons: 3J(C,Me). These general rules are very useful for the assignment of resonances in complex 13C spectra of pyrimidines and seem to be valid for other 6-membered aromatic nitrogen heterocycles. Furthermore, the additivity of substituent effects on 1J (CH) for monosubstituted pyrimidines allows the estimation of 1J (CH) for polysubstituted pyrimidines with a very good accuracy.  相似文献   

5.
The conformations of (Z)‐ and (E)‐5‐oxo‐B‐nor‐5,10‐secocholest‐1(10)‐en‐3β‐yl acetates ( 2 and 3 , resp.) were examined by a combination of X‐ray crystallographic analysis and NMR spectroscopy, with emphasis on the geometry of the cyclononenone moiety. The 1H‐ and 13C‐NMR spectra showed that the unsaturated nine‐membered ring of (E)‐isomer 3 in C6D6 and (D6)acetone solution exists in a sole conformation of type B 1 , which is similar to its solid‐state conformation. The (Z)‐isomer 2 in C6D6, CDCl3, and (D6)acetone solution, however, exists in two conformational forms of different families, with different orientation of the carbonyl group, the predominant form (85%) corresponding to the conformation of type A 1 and the minor (15%) to the conformation A 2 present also in the crystalline state. In this solid‐state conformations of the nine‐membered ring of both compounds, the 19‐Me and 5‐oxo groups are ‘β’‐oriented. The NMR analysis suggests that the nine‐membered ring of 4 has a conformation of type C 1 in CDCl3 solution.  相似文献   

6.
The NMR spectra of the trivalent fluorophospholanes ( 1, 2, 3 ) have been analysed at length. The absolute signs of the 3J(P? H) and 4J(F? H) coupling constants have been referred to the known negative sign of the 1J(P? F) coupling constant from selective heteronuclear double resonance experiments. The 3J(P? O? C? H) and 3J(P? N? C? H) coupling are positive. The weak values observed for 3J(P? S? C? H) have opposite signs, the larger being positive. All the 4J(F? P? X? C? H) coupling constants are positive showing a lack of stereospecificity.  相似文献   

7.
Signed values of all intra‐ring 2,3,4J(C,C) couplings in nine monosubstituted benzenes (C6H5‐X where X = F, Cl, Br, CH3, OCH3, Si(CH3)3, C ≡ N, NO, NO2) are experimentally determined as well as nine couplings to substituent carbons. It is confirmed that while all the vicinal intra‐ring 3J(C,C) are positive and all geminal 2J(C2,C4) are negative, both signs are found for geminal 2J(C1,C3) couplings. All the determined signs agree with those already predicted by theoretical calculations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The presence of a highly abundant passive nucleus (Z = 19 F or 31P) allows the simultaneous determination of the magnitude and the sign of up to three different heteronuclear coupling constants from each individual cross‐peak observed in a 2D 1H‐X selHSQMBC spectrum. Whereas J(HZ) and J(XZ) coupling constants are measured from E.COSY multiplet patterns, J(XH) is independently extracted from the complementary IPAP pattern generated along the detected F2 dimension. The incorporation of an extended TOCSY transfer allows the extraction of a complete set of all these heteronuclear coupling constants and their signs for an entire 1H subspin system. 1H‐X/1H‐Y time‐shared versions are also proposed for the simultaneous measurement of five different couplings (J(XH), J(YH), J(XZ), J(YZ), and J(ZH)) for multiple signals in a single NMR experiment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
10.
4‐Fluorinated levoglucosans were synthesised to test if OH???F H‐bonds are feasible even when the O???F distance is increased. The fluorinated 1,6‐anhydro‐β‐D ‐glucopyranoses were synthesised from 1,6 : 3,4‐dianhydro‐β‐D ‐galactopyranose ( 8 ). Treatment of 8 with KHF2 and KF gave 43% of 4‐deoxy‐4‐fluorolevoglucosan ( 9 ), which was transformed into the 3‐O‐protected derivatives 13 by silylation and 15 by silylation, acetylation, and desilylation. 4‐Deoxy‐4‐methyllevoglucosan ( 19 ) and 4‐deoxylevoglucosan ( 21 ) were prepared as reference compounds that can only form a bivalent H‐bond from HO? C(2) to O? C(5). They were synthesised from the iPr3Si‐protected derivative of 8 . Intramolecular bifurcated H‐bonds from HO? C(2) to F? C(4) and O? C(5) of the 4‐fluorinated levoglucosans in CDCl3 solution are evidenced by the 1H‐NMR scalar couplings h1J(F,OH) and 3J(H,OH). The OH???F H‐bond over an O???F distance of ca. 3.0 Å is thus formed in apolar solvents, at least when favoured by the simultaneous formation of an OH???O H‐bond.  相似文献   

11.
The vicinal coupling constant, J(12), between the vinyl CH and the ring CH protons in vinylcyclohexane was calculated from a ‘partial molecule’ six-spin system. The 100 and 270 MHz results are in good agreement; those at 60 MHz were, however, still inaccurate in this approximation. J(12) increases with increasing solvent polarity and decreasing temperature. The energy difference between the s-trans and gauche conformers in both C2Cl4 and perdeuterioacetone solvents is 879 ± 167 J mol?1 (210±40 cal mole?1). The s-trans conformer is the most stable, in contrast to the isoelectronic cyclohexylcarboxyaldehyde where the gauche rotamers are lower in energy.  相似文献   

12.
The title compound, 1‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐5‐(prop‐1‐ynyl)pyrimidin‐2,4(1H,3H)‐dione, C12H14N2O5, shows two conformations in the crystalline state: conformer 1 adopts a C2′‐endo (close to 2E; S‐type) sugar pucker and an anti nucleobase orientation [χ = −134.04 (19)°], while conformer 2 shows an S sugar pucker (twisted C2′‐endo–C3′‐exo), which is accompanied by a different anti base orientation [χ = −162.79 (17)°]. Both molecules show a +sc (gauche, gauche) conformation at the exocyclic C4′—C5′ bond and a coplanar orientation of the propynyl group with respect to the pyrimidine ring. The extended structure is a three‐dimensional hydrogen‐bond network involving intermolecular N—H...O and O—H...O hydrogen bonds. Only O atoms function as H‐atom acceptor sites.  相似文献   

13.
There are two symmetry‐independent formula units of the title compound, C6H15N4O2+·F?·HF, per cell. Both cations have a zwitterionic form, protonated at both the guanidyl and amino groups. The two symmetry‐independent cations differ in their conformation. In one of them the Cγ atom is in a gauche position to both the amino and carboxyl groups, while in the other this atom is trans to the amino group. The two anions have very similar geometry. The F? ions are strongly hydrogen bonded to an HF molecule [F—H?F 2.233 (2) and 2.248 (3) Å], thereby forming an asymmetric non‐linear bifluoride anion. These F?F distances are the shortest reported for an asymmetric HF2? anion.  相似文献   

14.
In 2-trifluoromethylphenyldifluorophosphine the proximate couplings 4J(19F31P) and 5J(19F19F) are + 68.3 and + 8.3 Hz, respectively. 1J(13C31P) is ?57.0 Hz, 2J(13C-1, 10F) is + 9.9 Hz and 2J(13C-6, 13C-6, 31P) is + 10.1 Hz. The trifluoromethyl substituent induces substantial changes in some coupling constants, particularly those between the 31P and ring 13C nuclei.  相似文献   

15.
A selection of mono‐ and pseudo ortho di‐substituted octafluoro[2.2]paracyclophane derivatives were analyzed using 19F‐1H HOESY, 1H COSY and 19F COSY techniques. This resulted in the unambiguous assignment of the 19F and 1H NMR resonances, and also revealed interesting solvent effects and noteworthy coupling patterns for various JHH, JHF, and JFF interactions, including observable through bond 7JFF and 8JFF couplings. For the four mono‐substituted derivatives, the assignments were achieved through the combination of 19F‐1H HOESY, 1H COSY and 19F COSY techniques. The C2 symmetry of the six pseudo ortho di‐substituted derivatives that were examined produced simplified spectra, and careful inspection of the characteristic 1H coupling patterns led to the assignment of 1H signals. Therefore only 19F‐1H HOESY experiments were required to complete the assignments for those molecules. Refinements and alternative strategies for previous protocols are presented for the molecules that were less responsive to nuclear Overhauser effect (nOe) experiments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Unfolding of helical trans‐β2,3‐hybrid peptides with (α–β)nα composition, when executed by increasing solvent polarity or temperature, proceeded in a systematic manner with the turns unwinding sequentially; C‐terminal region of these peptides were first to unwind and the process propagated towards N terminus with more and more β residues equilibrating from the gauche to the anti rotameric state across Cα?Cβ. This is evidenced by clear change in their CβH signal splitting, 3JCαH–CβH values, and sequential disappearance of i,i+2 NOEs.  相似文献   

17.
The crystal structure of N‐[(1‐{2‐oxo‐2‐[2‐(pyrazin‐2‐ylcarbonyl)hydrazin‐1‐yl]ethyl}cyclohexyl)methyl]pyrazine‐2‐carboxamide monohydrate (Pyr‐Gpn‐NN‐NH‐Pyr·H2O), C19H23N7O3·H2O, reveals an unusual trans–gauche (tg) conformation for the gabapentin (Gpn) residue around the Cγ—Cβ1) and Cβ—Cα2) bonds. The molecular conformation is stabilized by intramolecular N—H...N hydrogen bonds and weak C—H...O interactions. The packing of the molecules in the crystal lattice shows a network of strong N—H...O and O—H...O hydrogen bonds together with weak C—H...O and π–π inteactions.  相似文献   

18.
As a new type of foldamer, β‐aminoxy peptides have the ability to adopt novel β N? O turns or β N? O helices in solution. Herein, we describe a new subclass of β‐aminoxy peptide, that is, peptides of acyclic β2, 3‐aminoxy acids (NH2OCHR1CHR2COOH), in which the presence of two chiral centers provides insight into the effect of backbone stereochemistry on the folding of β‐aminoxy peptides. Acyclic β2, 3‐aminoxy peptides with syn and anti configurations have been synthesized and their conformations investigated by NMR, IR, and circular dichroism (CD) spectroscopic, and X‐ray crystallographic analysis. The β N? O turns or β N? O helices, which feature nine‐membered rings with intramolecular hydrogen bonds and have been identified previously in peptides of β3‐ and β2, 2‐aminoxy acids, are also predominantly present in the acyclic β2, 3‐aminoxy peptides with a syn configuration and N? O bonds gauche to the Cα? Cβ bonds in both solution and the solid state. In the acyclic β2, 3‐aminoxy peptides with an anti configuration, an extended strand (i.e., non‐hydrogen‐bonded state) is found in the solid state, and several conformations including non‐hydrogen‐bonded and intramolecular hydrogen‐bonded states are present simultaneously in nonpolar solvents. These results suggest that the backbone stereochemistry does affect the folding of the acyclic β2, 3‐aminoxy peptides. Theoretical calculations on the conformations of model acyclic β2, 3‐aminoxy peptides with different backbone stereochemistry were also conducted to elucidate structural characteristics. Our present work may provide useful guidelines for the design and construction of new foldamers with predicable structures.  相似文献   

19.
The title compound, C8H19NO7P2, is a member of the bis­phosphonate family of therapeutic compounds. PHPBP has inner‐salt character, consisting of a negatively charged PO3 group and a positively charged N atom. The six‐membered piperidine ring adopts an almost‐perfect chair conformation. The hydroxyl group and the N atom have gauche and trans conformations in relation to the O—C—C—C—N backbone, respectively. Hydrogen bonding is the main contributor to the packing in the crystal, which consists of head‐to‐head dimers formed through phosphonyl–phosphonyl hydrogen bonds, while O—H⋯O and N—H⋯O interactions join the dimers into a plane parallel to crystallographic b and c axes.  相似文献   

20.
Some monomer model compounds of lignin have been selectively 2H and 13C labelled: vanillin, ethyl ferulate, coniferyl alcohol and ethyl hydrogen malonate. Deuterium isotope effects on the 13C chemical shifts in [formyl-2H]vanillin, [5-2H]vanillin and [α,α,5-2H3]coniferyl alcohol made the unambiguous assignment of the aromatic 13C signals possible. Absolute 1,2,3J(CC) values have been determined on 13C spectra of [formyl-13C]vanillin, and of ethyl ferulate and coniferyl alcohol in which the vinylic C-γ and C-β carbons were 13C enriched. It has been possible to measure 4J(C?O, C-4) in vanillin and 4J(C-γ, C-4) in ethyl ferulate. The determination of 1,2,3,4J (CH) absolute values was done by means of gated decoupled 13C spectra of the non-labelled compounds. When second order effects made the use of this technique impossible we determined certain J(CH) values and their signs either by analysing the 1H NMR spectra of 13C labelled coniferyl alcohol [2J(C-β, H-γ), 2J(C-β, H-α), 2J(C-γ, H-β), 3J(C-γ, H-α)] or by a double irradiation experiment on the 250 MHz 1H NMR spectrum of ethyl [β-13C] ferulate [for 2J(C-β, H-γ)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号