首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Skp2 is thought to have two critical roles in tumorigenesis. As part of the SCFSkp2 ubiquitin ligase, Skp2 drives the cell cycle by mediating the degradation of cell cycle proteins. Besides the proteolytic activity, Skp2 also blocks p53‐mediated apoptosis by outcompeting p53 for binding p300. Herein, we exploit the Skp2/p300 interaction as a new target for Skp2 inhibition. An affinity‐based high‐throughput screen of a combinatorial cyclic peptoid library identified an inhibitor that binds to Skp2 and interferes with the Skp2/p300 interaction. We show that antagonism of the Skp2/p300 interaction by the inhibitor leads to p300‐mediated p53 acetylation, resulting in p53‐mediated apoptosis in cancer cells, without affecting Skp2 proteolytic activity. Our results suggest that inhibition of the Skp2/p300 interaction has a great potential as a new anticancer strategy, and our Skp2 inhibitor can be developed as a chemical probe to delineate Skp2 non‐proteolytic function in tumorigenesis.  相似文献   

2.
大孔吸附树脂分离纯化荔枝核黄酮类化合物的研究   总被引:8,自引:2,他引:6  
比较了D101、D3520、NKAII、AB-8、X-5、HPD-100、HPD-300、HPD-600等8种大孔吸附树脂对荔枝核中抗乙肝活性成分黄酮类化合物的吸附及解吸性能,筛选出效果较好的HPD-300树脂进行分离纯化实验研究。实验表明,HPD-300树脂能够有效地吸附和解吸荔枝核黄酮类化合物,并确定了最佳的吸附和解吸工艺参数。采用最佳的工艺条件分离纯化荔枝核黄酮类化合物,黄酮类化合物的含量由31%提高到82%。  相似文献   

3.

Octamethylenedicarboxylic dibenzoylhydrazide (TMC-300) was used as a nucleating agent for isotactic polypropylene (iPP) for the first time. The Avrami method and the Caze method were used to analyze the isothermal and non-isothermal crystallization kinetics of iPP incorporated with TMC-300, respectively. During isothermal crystallization, the half crystallization time at 130 °C reduces from 130 s of virgin iPP to 44 s after addition of TMC-300, which reflects that TMC-300 increased the crystallization rate of iPP obviously. The crystallization activation energy decreases from 382.5 kJ mol?1 of virgin iPP to 275.3 kJ mol?1 of iPP/TMC-300. During non-isothermal crystallization, the crystallization peak temperature of iPP nucleated with TMC-300 was increased by 5.1 °C when compared to that of virgin iPP at the cooling rate of 20 °C min?1, and both the reduction of half crystallization time and the increase in peak crystallization temperature also justified that the addition of TMC-300 accelerated the crystallization of iPP.

  相似文献   

4.
5.
Bovine cardiac and rabbit skeletal troponin complexes were separated into their respective subunits employing high-performance liquid chromatographic (HPLC) techniques on CM-300 and Q-300 ion-exchangers. Bovine cardiac and rabbit skeletal subunits were separated on the strong anion-exchanger, Q-300, in 8 M urea, 50 mM Tris, 2 mM EGTA, 0.5 mM dithiothreitol, pH 7.5, employing a linear salt gradient and on the weak cation-exchanger, CM-300, in 8 M urea, 50 mM potassium dihydrogen phosphate, 2 mM EGTA, 0.5 mM dithiothreitol, pH 6.5, using a linear salt gradient. To obtain complete purification of all components of troponin both ion-exchangers were required. The initial separation of troponin was carried out on the strong anion-exchanger followed by weak cation-exchange chromatography of the troponin I collected from the strong anion-exchange column. The troponin T subunits obtained from Q-300 chromatography demonstrated heterogeneity (three components: T1, T2 and T3) while the troponin I collected from both sources on the Q-300 column were both resolved into major doublets (I1 and I2) when rechromatographed on the CM-300 column. The three troponin T fractions and two troponin I fractions isolated from ion-exchange HPLC were examined by sodium dodecyl sulfate-urea polyacrylamide gel electrophoresis and two-dimensional gel electrophoresis to confirm that the heterogeneity was due to differences in charge and not molecular weight. These results were in agreement with the charge differences observed from retention times on ion-exchange HPLC. When comparing the same troponin subunit from different muscle sources, considerable differences in the content of charged amino acid residues were also observed.  相似文献   

6.
The structure of gold cyanide, AuCN, has been determined at 10 and 300 K using total neutron diffraction. The structure consists of infinite [bond]Au[bond](CN)[bond]Au[bond](CN)[bond] linear chains, hexagonally packed, with the gold atoms in sheets. The Au-C and Au-N bond lengths are found to be identical, with d(Au(-C/N) = 1.9703(5) A at 300 K. This work supersedes a previous study, by others, which used Rietveld analysis of neutron Bragg diffraction in isolation, and found these bonds to have significantly different lengths (Delta d = 0.24 A) at 300 K. The total correlation function, T(r), at 10 and 300 K, has been modeled using information derived from total diffraction. The broadening of inter- and intrachain correlations differs markedly due to random displacements of the chains in the direction of the chain axes. This is a consequence of the relatively weak bonding between the chains. An explanation for the negative thermal expansion in the c-direction, which occurs between 10 and 300 K, is presented.  相似文献   

7.
Coesite nanocrystals have been synthesized from periodic mesoporous organosilica (PMO) with (CH(2))(2) bridges heated at 300 °C for 150 min and 12 GPa. The crystals are not sintered, single crystalline, and have diameters of ca. 100-300 nm. Below 300 °C, an amorphous non-porous organosilica glass was obtained. Heating above 300 °C at 12 GPa results in the rapid crystal growth and micron size coesite crystals were formed.  相似文献   

8.
Molybdenum and TZM have been welded using electron beam welding techniques. The microstructures and tensile properties of the welded samples have been examined at temperatures between 300 and 1173 K. Brittle behaviour was always observed in weld metal at 300 K with fracture initiating at grain boundaries and propagating by either the intergranular or transgranular mode. At higher temperatures (above 573 K), welds showed ductile failure with full necking. Postweld heat treatment was found to be effective to enhance cohesion of grain boundaries, resulting in increasing ductility at 300 K.  相似文献   

9.
This paper presents a method for the non-destructive inspection and quantitative comparison of low-velocity impact damage in thermoplastic and thermoset composites. X-ray microscope (XRM) computed tomography is used to analyse the three-dimensional internal damage in carbon fibre/poly-ether-ether-ketone (AS4/PEEK) and carbon fibre/epoxy (CCF300/Epoxy) laminates. With the materials and testing conditions used, it was shown that thermoplastic composites have better interlaminar and intralaminar properties, and the following quantitative conclusions were drawn. Under the same impact energy, the maximum contact force of AS4/PEEK laminate was approximately twice that of CCF300/Epoxy laminate. Dissection of the reconstructed XRM volume along a characteristic slicing surface showed that AS4/PEEK had less internal damage than CCF300/epoxy. When the impact energy was 15 J, the XRM results showed that the sum of delamination areas between each ply in AS4/PEEK was only 9% of that in CCF300/Epoxy, whereas the ultrasonic C-scan results showed that the total delamination area of AS4/PEEK was 54.78% of that of CCF300/Epoxy.  相似文献   

10.
Reversible acetylation of histone and non-histone proteins plays an important role in the regulation of gene expression and cellular homeostasis. A balance between acetylation and deacetylation of these proteins are maintained by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Among different HATs, p300/CBP is the most widely studied chromatin modifying enzymes. p300 is involved in several physiological processes like cell growth, regulation of gene expression, development, and tumor suppressor, and therefore its dysfunction causes different diseases. The autoacetylation of p300 is one of the key regulators of its catalytic activity. Mechanistically, autoacetylation induced structural changes in the p300 HAT domain acts as a master switch. In this report, we have shown that the natural HAT inhibitor garcinol could potently inhibit the autoacetylation activity. Furthermore, for the first time, we demonstrate that indeed autoacetylation induces structural changes in p300 HAT domain, as probed by surface-enhanced Raman scattering. Presumably, SERS will be a very useful tool to find out the structural changes in the other self-modifying enzymes like kinases and methyltransferases.  相似文献   

11.
12.
    
Ca2+ 3+. , Ca2+ SI 3+ . 640 cm–1 Ca2+, . TO4.
Studies of the infra-red spectra of the framework of RECaNaY and RENaY zeolites after vacuum dehydration indicate that Ca2+ ions occupy SI positions and direct RE3+ into the supercavities. The 640 cm–1 band is attributed to Ca2+ ions located in hexagonal prisms. (sym and) asym of TO4 modes are observed to be split.
  相似文献   

13.
We have measured the S-parameter and life-time as a function of temperature from 15 to 300 K in acid Nafion-117. In addition, high temperature measurements from 300 to 550 K have been carried out in acid as well as Cs neutralised Nafion membrane. The results are discussed.  相似文献   

14.
By employing first-principles metadynamics simulations, we explore the 300 K structures of solid hydrogen over the pressure range 150-300 GPa. At 200 GPa, we find the ambient-pressure disordered hexagonal close-packed (hcp) phase transited into an insulating partially ordered hcp phase (po-hcp), a mixture of ordered graphene-like H(2) layers and the other layers of weakly coupled, disordered H(2) molecules. Within this phase, hydrogen remains in paired states with creation of shorter intra-molecular bonds, which are responsible for the very high experimental Raman peak above 4000 cm(-1). At 275 GPa, our simulations predicted a transformation from po-hcp into the ordered molecular metallic Cmca phase (4 molecules∕cell) that was previously proposed to be stable only above 400 GPa. Gibbs free energy calculations at 300 K confirmed the energetic stabilities of the po-hcp and metallic Cmca phases over all known structures at 220-242 GPa and >242 GPa, respectively. Our simulations highlighted the major role played by temperature in tuning the phase stabilities and provided theoretical support for claimed metallization of solid hydrogen below 300 GPa at 300 K.  相似文献   

15.
Reversible acetylation of nucleosomal histones and nonhistone proteins play pivotal roles in the regulation of all the DNA templated phenomenon. Dysfunction of the enzymes involved in the acetylation/deacetylation leads to several diseases. Therefore, these enzymes are the targets for new generation therapeutics. Here, we report the synthesis of trifluoromethyl phenyl benzamides and their effect on histone acetyltransferase (HAT) activity of p300. One of these benzamides, CTPB (N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-6-pentadecyl-benzamide), was discovered as a potent activator of the p300 HAT activity. We have found that pentadecyl hydrocarbon chain of CTPB is required to activate the HAT only under certain context. Furthermore, our results show that the relative position of -CF3 and -Cl in CTB (N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-benzamide) is also very critical for the activation. Surface-enhanced Raman spectroscopy (SERS) of p300 and the HAT activator complexes evidently suggest that the activation of HAT activity is achieved by the alteration of p300 structure. Therefore, apart from elucidating the chemical basis for small molecule mediated activation of p300, this report also describes, for the first time, Raman spectroscopic analysis of the complexes of histone-modifying enzymes and their modulators, which may be highly useful for therapeutic applications.  相似文献   

16.
A rapid sensitive method has been developed for the detection and quantitation of poly(ethylene glycol) 300 (PEG 300) in long-chain free fatty acid mixtures that requires minimal sample preparation. The PEG 300 was separated from the free fatty acids by RP-HPLC using a water–tetrahydrofuran gradient. PEG and the free fatty acids were detected using evaporative light scattering detection. The minimum detectable level of PEG in a free fatty acid mixture was 0.0125%.  相似文献   

17.
Hydrothermal reaction experiments of silicate minerals (actinolite, pyroxene, etc.) were carried out using flow-through reactors in the temperature range from 25 to 400 °C at 23 MPa. The dissolution in water of a multi-oxide silicate mineral, for example actinolite or pyroxene may require the breaking of more than one type of metal?Coxygen bond. Differences between the rates at which these bonds break are often sufficiently large for dissolution to be non-stoichiometric. Dissolution rates (of Si) for actinolite and pyroxene in water were found to increase with increasing T from 25 to 300 °C, and then decrease with increasing T from 300 to 400 °C. The maximum release rates of Si are reached at 300 °C. The different metals in the minerals often have different release rates at a fixed temperature. At T < 300 °C the release rates of Na, Ca, Mg, Fe, and Al from minerals are usually higher than that of Si. In contrast, release rates of Si are higher than those of the others at T ?? 300 °C. The hydrolysis of Si?CO?CSi bonds and metal ion-H+ exchange reactions at T < 300 °C are different from reactions at T ?? 300 °C, at 23 MPa, because the solvent properties of water (decreasing density and dielectric constant in the region from sub-critical to supercritical state) affect reaction rates. log r (dissolution rates of Si) increases with 1/dielectric constant, as the temperature rises to close to 300 °C (or up to 374 °C) and at the critical pressure.  相似文献   

18.
A sonochemical method was employed to prepare reactive nanoparticles of FeSbO(4) at 300 °C, which is the lowest calcination temperature reported so far for preparing FeSbO(4). A systematic evolution of the FeSbO(4) phase formation as a function of temperature was monitored by in situ synchrotron X-ray measurements. The 300 and 450 °C calcined powders exhibited specific surface areas of 116 and 75 m(2)/g, respectively. The X-ray photoelectron spectra analysis confirmed the presence of mainly Fe(3+) and Sb(5+) in the calcined powder. The response of the fabricated sensors (using both 300 and 450 °C calcined powders) toward 1000 ppm and 1, 2, 4, and 8% hydrogen, respectively, has been monitored at various operating temperatures. The sensors fabricated using 300 °C calcined powder exhibited a response of 76% toward 4% H(2) gas at an operating temperature of 300 °C, while those fabricated using 450 °C calcined powder exhibited a higher response of 91% with a quick recovery toward 4% H(2) gas at 300 °C. The results confirmed that a higher calcination temperature was preferred to achieve better sensitivity and selectivity toward hydrogen in comparison to other reducing gases such as butane and methane. The experimental results confirmed that the sonochemical process can be easily used to prepare FeSbO(4) nanoparticles for various catalytic applications as demonstrated. Here, we project FeSbO(4) as a new class of material exhibiting high sensitivity toward a wide range of hydrogen gas. Such sensors that could detect high concentrations of hydrogen may find application in nuclear reactors where there will be a leakage of hydrogen.  相似文献   

19.
A simple method for producing a sheath flow cuvette in PDMS suitable for post‐column detection in CE is described. Two types of cuvette were investigated. In the first, the sheath flow channel had a round cross‐section of approximately 635 μm diameter, whereas the second cuvette had a 300×300 μm2 square channel. Both cuvettes produced laminar flows that ensheathed the separation capillary's effluent allowing sensitive fluorescence measurements. The elasticity of the PDMS allowed the 300×300 μm2 square sheath flow channel to expand uniformly and accommodate the larger 330–340 μm od round separation capillary, producing a self‐aligning cuvette with robust mechanical properties. With this cuvette, linear calibrations of over five orders of magnitude and 15–30 zmol fluorescein detection limits were obtained for 12 and 50 μm id capillaries.  相似文献   

20.
Emission from high-energy-electron-irradiated golden hamster embryo (GHE) cells has been studied over the temperature range 12–300 K both by a one-shot-single-photon-counting method and by photocurrent measurements with an oscilloscope. Emission from the irradiated phosphate buffered saline (PBS) also has been studied. The emission spectra from PBS at 12 and 77 K show a maximum around 330 and 380 nm, respectively, which are the same spectra as those from irradiated pure H2O. The emission from irradiated GHE consists of the new band at 480 nm in addition to the emission from H2O. The 480 nm emission is observed at the temperature range of 12–300 K, though the emission at 300 K is much lower than that at low temperature. The 480 nm emission is ascribed to the transition from excited organic substances in GHE cells. The intensity of 480 nm emission at 300 K increases linearly with increasing irradiation-dose in the range of 11–600 Gy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号