首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A chiral manganese porphyrin complex with a two‐point hydrogen‐bonding site was prepared and probed in catalytic C?H oxygenation reactions of 3,4‐dihydroquinolones. The desired oxygenation occurred with perfect site selectivity at the C4 methylene group and with high enantioselectivity in favor of the respective 4S‐configured secondary alcohols (12 examples, 29–97 % conversion, 19–68 % yield, 87–99 % ee). Mechanistic studies support the hypothesis that the reaction proceeds through a rate‐ and selectivity‐determining attack of the reactive manganese oxo complex at the hydrogen‐bound substrate and an oxygen transfer by a rebound mechanism.  相似文献   

2.
3.
Porphyrins have been investigated for a long time in various fields of chemistry owing to their excellent redox and optical properties. Structural isomers of porphyrins have been synthesized, namely, porphycene, hemiporphycene, and corrphycene. Although the number of studies on these structural isomers is limited, they exhibit interesting properties suitable for various applications such as photovoltaic devices, photocatalysts, and photodynamic therapy. In the present review, we summarized their photoinduced electron‐transfer processes, which are key steps of various photofunctions. Their electrochemical and photophysical properties are summarized as basic properties for the electron transfer. Furthermore, differences among these isomers in the electron‐transfer processes are clarified, and its origin has been discussed on the basis of their molecular structures.  相似文献   

4.
We describe the thermodynamic characterisation of the self‐sorting process experienced by two homodimers assembled by hydrogen‐bonding interactions through their cyclopeptide scaffolds and decorated with Zn–porphyrin and fullerene units into a heterodimeric assembly that contains one electron‐donor (Zn–porphyrin) and one electron‐acceptor group (fullerene). The fluorescence of the Zn–porphyrin unit is strongly quenched upon heterodimer formation. This phenomenon is demonstrated to be the result of an efficient photoinduced electron‐transfer (PET) process occurring between the Zn–porphyrin and the fullerene units of the heterodimeric system. The recombination lifetime of the charge‐separated state of the heterodimer complex is in the order of 180 ns. In solution, both homo‐ and heterodimers are present as a mixture of three regioisomers: two staggered and one eclipsed. At the concentration used for this study, the high stability constant determined for the heterodimer suggests that the eclipsed conformer is the main component in solution. The application of the bound‐state scenario allowed us to calculate that the heterodimer exists mainly as the eclipsed regioisomer (75–90 %). The attractive interaction that exists between the donor and acceptor chromophores in the heterodimeric assembly favours their arrangement in close contact. This is confirmed by the presence of charge‐transfer bands centred at 720 nm in the absorption spectrum of the heterodimer. PET occurs in approximately 75 % of the chromophores after excitation of both Zn–porphyrin and fullerene chromophores. Conversely, analogous systems, reported previously, decorated with extended tetrathiafulvalene and fullerene units showed a PET process in a significantly reduced extent (33 %). We conclude that the strength (stability constant (K)×effective molarity (EM)) of the intramolecular interaction established between the two chromophores in the Zn–porphyrin/fullerene cyclopeptide‐based heterodimers controls the regioisomeric distribution and regulates the high extent to which the PET process takes place in this system.  相似文献   

5.
Photooxidation of alkanes by dioxygen occurred under visible light irradiation of 2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone (DDQ) which acts as a super photooxidant. Solvent‐free hydroxylation of cyclohexane and alkanes is initiated by electron transfer from alkanes to the singlet and triplet excited states of DDQ to afford the corresponding radical cations and DDQ??, as revealed by femtosecond laser‐induced transient absorption measurements. Alkane radical cations readily deprotonate to produce alkyl radicals, which react with dioxygen to afford alkylperoxyl radicals. Alkylperoxyl radicals abstract hydrogen atoms from alkanes to yield alkyl hydroperoxides, accompanied by regeneration of alkyl radicals to constitute the radical chain reactions, so called autoxidation. The radical chain is terminated in the bimolecular reactions of alkylperoxyl radicals to yield the corresponding alcohols and ketones. DDQ??, produced by the photoinduced electron transfer from alkanes to the excited state of DDQ, disproportionates with protons to yield DDQH2.  相似文献   

6.
Quinones are important organic oxidants in a variety of synthetic and biological contexts, and they are susceptible to activation towards electron transfer through hydrogen bonding. Whereas this effect of hydrogen bond donors (HBDs) has been observed for Lewis basic, weakly oxidizing quinones, comparable activation is not readily achieved when more reactive and synthetically useful electron‐deficient quinones are used. We have successfully employed HBD‐coupled electron transfer as a strategy to activate electron‐deficient quinones. A systematic investigation of HBDs has led to the discovery that certain dicationic HBDs have an exceptionally large effect on the rate and thermodynamics of electron transfer. We further demonstrate that these HBDs can be used as catalysts in a quinone‐mediated model synthetic transformation.  相似文献   

7.
Anchoring groups are extremely important in controlling the performance of dye‐sensitized solar cells (DSCs). The design and characterization of sensitizers with new anchoring groups, in particular non‐carboxylic acid groups, has become a recent focus of DSC research. Herein, new donor? π? acceptor zinc? porphyrin dyes with a pyridine ring as an anchoring group have been designed and synthesized for applications in DSCs. Photophysical and electrochemical investigations demonstrated that the pyridine ring worked effectively as an anchoring group for the porphyrin sensitizers. DSCs that were based on these new porphyrins showed an overall power‐conversion efficiency of about 4.0 % under full sunlight (AM 1.5G, 100 mW cm?2).  相似文献   

8.
9.
10.
The transition‐metal‐catalyzed selective hydroarylation of unsymmetrical alkynes represents the state‐of‐art in organic chemistry, and still mainly relies on the use of precious late‐transition‐metal catalysts. Reported herein is an unprecedented MnI‐catalyzed hydroarylation of unsymmetrical 1,3‐diyne alcohols with commercially available arylboronic acids with predictive selectivity. This method addresses the challenges in regio‐, stereo‐, and chemoselectivity. It offers a general, convenient and practical strategy for the modular synthesis of multisubstituted Z‐configurated conjugated enynes. This protocol is distinguished by its operational simplicity, complete selectivity, excellent functional‐group compatibility, and gram‐scale potential. A dimeric MnI species, Mn2(CO)8Br2, was proven to be a much more efficient catalyst precursor than Mn(CO)5Br.  相似文献   

11.
12.
13.
14.
合成了乙二醛缩双(邻氨基苯酚)合锰(II)配合物, 讨论了其在DMF中的载氧行为、氧合动力学; 设计正交试验考察了以分子氧为氧源, 该配合物催化氧化醋酸去氢表雄酮生成7-酮基醋酸去氢表雄酮的性能, 最高收率达78.4%.  相似文献   

15.
Highly selective β‐methylation of alcohols was achieved using an earth‐abundant first row transition metal in the air stable molecular manganese complex [Mn(CO)2Br[HN(C2H4PiPr2)2]] 1 ([HN(C2H4PiPr2)2]=MACHO‐iPr). The reaction requires only low loadings of 1 (0.5 mol %), methanolate as base and MeOH as methylation reagent as well as solvent. Various alcohols were β‐methylated with very good selectivity (>99 %) and excellent yield (up to 94 %). Biomass derived aliphatic alcohols and diols were also selectively methylated on the β‐position, opening a pathway to “biohybrid” molecules constructed entirely from non‐fossil carbon. Mechanistic studies indicate that the reaction proceeds through a borrowing hydrogen pathway involving metal–ligand cooperation at the Mn‐pincer complex. This transformation provides a convenient, economical, and environmentally benign pathway for the selective C?C bond formation with potential applications for the preparation of advanced biofuels, fine chemicals, and biologically active molecules  相似文献   

16.
Mononuclear nonheme MnIV?O complexes with two isomers of a bispidine ligand have been synthesized and characterized by various spectroscopies and density functional theory (DFT). The MnIV?O complexes show reactivity in oxidation reactions (hydrogen‐atom abstraction and sulfoxidation). Interestingly, one of the isomers (L1) is significantly more reactive than the other (L2), while in the corresponding FeIV?O based oxidation reactions the L2‐based system was previously found to be more reactive than the L1‐based catalyst. This inversion of reactivities is discussed on the basis of DFT and molecular mechanics (MM) model calculations, which indicate that the order of reactivities are primarily due to a switch of reaction channels (σ versus π) and concomitant steric effects.  相似文献   

17.
The Hirsch–Bingel reaction of bis{4‐methyl[1,2,3]triazolyl}malonic ester‐bridged bis(permethyl‐β‐cyclodextrin) 1 with C60 has led to the formation of a new fullerene‐bridged bis(permethyl‐β‐cyclodextrin) 2 , which has been comprehensively characterized by NMR spectroscopy, MALDI‐MS, and elemental analysis. Taking advantage of the high affinity between 2 and 5,10,15,20‐tetrakis(4‐sulfonatophenyl)porphyrin ( 3 ) or [5,10,15,20‐tetrakis(4‐sulfonatophenyl)porphinato]zinc(II) ( 4 ), linear supramolecular architectures with a width of about 2 nm and a length ranging from hundreds of nanometers to micron dimension were conveniently constructed and fully investigated by transmission electron microscopy (TEM), atomic force microscopy (AFM), and scanning electron microscopy (SEM). Significantly, the photoinduced electron‐transfer (PET) process between porphyrin and C60 moieties takes place within the 2 ? 3 and 2 ? 4 supramolecular architectures under light irradiation, leading to the highly efficient quenching of the porphyrin fluorescence. The PET process and the charge‐separated state were investigated by means of fluorescence spectroscopy, fluorescence decay, cyclic voltammetry, and nanosecond transient absorption measurements.  相似文献   

18.
The study of manganese complexes as water‐oxidation catalysts (WOCs) is of great interest because they can serve as models for the oxygen‐evolving complex of photosystem II. In most of the reported Mn‐based WOCs, manganese exists in the oxidation states III or IV, and the catalysts generally give low turnovers, especially with one‐electron oxidants such as CeIV. Now, a different class of Mn‐based catalysts, namely manganese(V)–nitrido complexes, were explored. The complex [MnV(N)(CN)4]2− turned out to be an active homogeneous WOC using (NH4)2[Ce(NO3)6] as the terminal oxidant, with a turnover number of higher than 180 and a maximum turnover frequency of 6 min−1. The study suggests that active WOCs may be constructed based on the MnV(N) platform.  相似文献   

19.
We describe a mild and operationally simple procedure for the oxidation of olefins into ketones. The reaction is catalyzed by the hexadecafluorinated iron–phthalocyanine complex FePcF16 with stoichiometric amounts of triethylsilane as an additive under oxygen atmosphere to give ketones in good to high yields with excellent chemoselectivity and functional group tolerance. Ketone formation proceeds in up to 95 % yield and with 100 % regioselectivity while the corresponding alcohols were observed as side products.  相似文献   

20.
A porphyrin π‐system has been modulated by enhancing the push–pull character with highly asymmetrical substitution for dye‐sensitized solar cells for the first time. Namely, both two diarylamino moieties as a strong electron‐donating group and one carboxyphenylethynyl moiety as a strong electron‐withdrawing, anchoring group were introduced into the meso‐positions of the porphyrin core in a lower symmetrical manner. As a result of the improved light‐harvesting property as well as high electron distribution in the anchoring group of LUMO, a push–pull‐enhanced, porphyrin‐sensitized solar cell exhibited more than 10 % power conversion efficiency, which exceeded that of a representative highly efficient porphyrin (i.e., YD2)‐sensitized solar cell under optimized conditions. The rational molecular design concept based on highly asymmetric, push–pull substitution will open the possibilities of further improving cell performance in organic solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号