首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
In this paper, we propose an interfacial pressure correction algorithm for smoothed particle hydrodynamics (SPH) simulation of multiphase flows with large density ratios. This correction term is based on the assumption of small deformation of the interface, and derived from perturbation expansion analysis. It is also proven to be applicable in cases with complex interfaces. This correction algorithm helps to overcome the discontinuities of the pressure gradient over the interfaces, which may cause unphysical gap between different phases. This proposed correction algorithm is implemented on a recent multiphase SPH model, which is based on the assumption of pressure continuity over the interfaces. The coupled dynamic solid boundary treatment is used to simulate solid walls; and a cut‐off pressure is applied to avoid negative particle pressure, which may cause computational instabilities in SPH. Three numerical examples of air–water flows, including sloshing, dam breaking, and water entry, are presented and compared with experimental data, indicating the robustness of our pressure correction algorithm in multiphase simulations with large density ratios. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
    
This paper first applies a flux vector‐type splitting method based on the numerical speed of sound for computing incompressible single and multifluid flows. Here, a preconditioning matrix based on Chorin's artificial compressibility concept is used to modify the incompressible multifluid Navier–Stokes equations to be hyperbolic and density or volume fraction‐independent. The current approach can reduce eigenvalues disparity induced from density or volume fraction ratios and enhance numerical stability. Also, a simple convection‐pressure flux‐splitting method with high‐order essentially nonoscillatory‐type primitive variable extrapolations coupled with monotone upstream‐centered schemes for conservation laws‐type volume fraction recompressed reconstruction is used to maintain the preservation of sharp interface evolutions in multifluid flow simulations. Benchmark tests including a solid rotation test of a notched two‐dimensional cylinder, the evolution of spiral and rotational shapes of deformable circles, a dam breaking problem, and the Rayleigh–Taylor instability were chosen to validate the current incompressible multifluid methodology. An incompressible driven cavity was also chosen to check the robustness of the proposed method on the computation of single fluid incompressible flow problems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
    
A multiphase flow model has been established based on a moving particle semi‐implicit method. A surface tension model is introduced to the particle method to improve the numerical accuracy and stability. Several computational techniques are employed to simplify the numerical procedure and further improve the accuracy. A particle fraction multiphase flow model is developed and verified by a two‐phase Poiseuille flow. The multiphase surface tension model is discussed in detail, and an ethanol drop case is introduced to verify the surface tension model. A simple dam break is simulated to demonstrate the improvements with various modifications in particle method along with a new boundary condition. Finally, we simulate several bubble rising cases to show the capacity of this new model in simulating gas–liquid multiphase flow with large density ratio difference between phases. The comparisons among numerical results of mesh‐based model, experimental data, and the present model, indicate that the new multiphase particle method is acceptable in gas–liquid multiphase fluids simulation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
         下载免费PDF全文
The WENO method, RKDG method, RKDG method with original ghost fluid method, and RKDG method with modified ghost fluid method are applied to singlemedium and two-medium air-air, air-liquid compressible flows with high density and pressure ratios: We also provide a numerical comparison and analysis for the above methods. Numerical results show that, compared with the other methods, the RKDG method with modified ghost fluid method can obtain high resolution results and the correct position of the shock, and the computed solutions are converged to the physical solutions as themesh is refined.  相似文献   

5.
    
The present work is devoted to the numerical approximation of a system which arises when modelling a two‐phase flow in a pipeline. Two particular difficulties are of special interest, the non‐conservativity and the weakly hyperbolicity of this system. Some elementary waves are characterized and a relaxation system, unconditionally hyperbolic, is proposed. The stability criteria of the resulting relaxation method are achieved by a Chapmann–Enskog‐like expansion. A numerical scheme based on the relaxation system is proposed and computations are performed on a shock tube. Validation is performed by comparison with the exact solution and also to the solution from a modified HLL scheme. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
杨秋足  徐绯  王璐  杨扬 《力学学报》2019,51(3):730-742
多相流界面存在密度、黏性等物理场间断,直接采用传统光滑粒子水动力学(smoothedparticle hydrodynamics,SPH)方法进行数值模拟,界面附近的压力和速度存在震荡.一套基于黎曼解能够处理大密度比的多相流SPH计算模型被提出,该模型利用黎曼解在处理接触间断问题方面的优势,将黎曼解引入到SPH多相流计算模型中,为了能够准确求解多相流体物理黏性、减小黎曼耗散,对黎曼形式的SPH动量方程进行了改进,又将Adami固壁边界与黎曼单侧问题相结合来施加多相流SPH固壁边界,同时模型中考虑了表面张力对小尺度异相界面的影响,该模型没有添加任何人工黏性、人工耗散和非物理人工处理技术,能够反应多相流真实物理黏性和物理演变状态.采用该模型首先对三种不同粒子间距离散下方形液滴震荡问题进行了数值模拟,验证了该模型在处理异相界面的正确性和模型本身的收敛性;后又通过对Rayleigh--Taylor不稳定、单气泡上浮、双气泡上浮问题进行了模拟计算,结果与文献对比吻合度高,异相界面捕捉清晰,结果表明,本文改进的多相流SPH模型能够稳定、有效的模拟大密度比和黏性比的多相流问题.  相似文献   

7.
    
In recent years multigrid algorithms have been applied to increasingly difficult systems of partial differential equations and major improvements in both speed of convergence and robustness have been achieved. Problems involving several interacting fluids are of great interest in many industrial applications, especially in the process and petro-chemical sectors. However, the multifluid version of the Navier–Stokes equations is extremely complex and represents a challenge to advanced numerical algorithms. In this paper, we describe an extension of the full approximation storage (FAS) multigrid algorithm to the multifluid equations. A number of special issues had to be addressed. The first was the development of a customised, non-linear, coupled relaxation scheme for the smoothing step. Automatic differentiation was used to facilitate the coding of a robust, globally convergent quasi-Newton method. It was also necessary to use special inter-grid transfer operators to maintain the realisability of the solution. Algorithmic details are given and solutions for a series of test problems are compared with those from a widely validated, commercial code. The new approach has proved to be robust; it achieves convergence without resorting to specialised initialisation methods. Moreover, even though the rate of convergence is complex, the method has achieved very good reduction factors: typically five orders of magnitude in 50 cycles. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
为研究空沟在层状地基上时,土体参数和土体分界面对土体振动响应的影响,采用Comsol仿真物理场建立了二维有限元分析模型。在研究中,分析了层状地基不同土体参数时的土体振动响应表现差异,结果表明:空沟在深度达到层状地基的土体分界面附近时会出现振动加强现象,该现象受到分层土体的泊松比和密度以及弹性模量的影响。土体参数的变化同样会导致土体振动响应的变化,具体表现为密度越大则土体振动响应就越大;而弹性模量和泊松比则需考虑分层情况。其中下层弹性模量越大则土体振动响应越大,上层则与之相反;下层泊松比越小则土体振动响应越大,而上层在空沟深度小于一定范围内时时表现为泊松比越小土体振动响应越大,在当达到一定深度后,上层土体不同泊松比的加速度大小曲线呈现交错状态。  相似文献   

9.
杨秋足  徐绯  王璐  杨扬 《力学学报》2019,51(3):730-742
多相流界面存在密度、黏性等物理场间断,直接采用传统光滑粒子水动力学(smoothedparticle hydrodynamics,SPH)方法进行数值模拟,界面附近的压力和速度存在震荡.一套基于黎曼解能够处理大密度比的多相流SPH计算模型被提出,该模型利用黎曼解在处理接触间断问题方面的优势,将黎曼解引入到SPH多相流计算模型中,为了能够准确求解多相流体物理黏性、减小黎曼耗散,对黎曼形式的SPH动量方程进行了改进,又将Adami固壁边界与黎曼单侧问题相结合来施加多相流SPH固壁边界,同时模型中考虑了表面张力对小尺度异相界面的影响,该模型没有添加任何人工黏性、人工耗散和非物理人工处理技术,能够反应多相流真实物理黏性和物理演变状态.采用该模型首先对三种不同粒子间距离散下方形液滴震荡问题进行了数值模拟,验证了该模型在处理异相界面的正确性和模型本身的收敛性;后又通过对Rayleigh--Taylor不稳定、单气泡上浮、双气泡上浮问题进行了模拟计算,结果与文献对比吻合度高,异相界面捕捉清晰,结果表明,本文改进的多相流SPH模型能够稳定、有效的模拟大密度比和黏性比的多相流问题.   相似文献   

10.
    
In a recent work by Gui et al. 13 , an incompressible SPH model was presented that employs a mixed pressure Poisson equation (PPE) source term combining both the density‐invariant and velocity divergence‐free formulations. The present work intends to apply the model to a wider range of fluid impact situations in order to quantify the numerical errors associated with different formulations of the PPE source term in incompressible SPH (ISPH) models. The good agreement achieved between the model predictions and the documented data is taken as a further demonstration that the mixed source term formulation can accurately predict the fluid impact pressures and forces, both in the magnitude and in the spatial and temporal patterns. Furthermore, an in‐depth numerical analysis using either the pure density‐invariant or velocity divergence‐free formulation has revealed that the pure density‐invariant formulation can lead to relatively large divergence errors while the velocity divergence‐free formulation may cause relatively large density errors. As compared with these two approaches, the mixed source term formulation performs much better having the minimum total errors in all test cases. Although some recent studies found that the weakly compressible SPH models perform somewhat better than the incompressible SPH models in certain fluid impact problems, we have shown that this could be largely caused by the particular formulation of PPE source term in the previous ISPH models and a better formulation of the source term can significantly improve the accuracy of ISPH models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The elasto-plastic finite element analyses for an interface crack indissimilar material,based on the crack energy density(CED)concept,are investigatedin mode Ⅰ loading condition.It is confirmed that the values of CED almost remainstable when the notch radius ρ is sufficiently small,both in elastic and elasto-plasticcase.Numerical results for both elastic and elasto-plastic cases show that under themode Ⅰ loading condition,when the crack propagates to the more stiff material with asmall angle,the total CED will become larger than that along the interface.If thecrack heads into the more compliant material,the CED will become less than that alongthe interface.  相似文献   

12.
王帅  姚寅  杨亚政  陈少华 《力学学报》2017,49(5):978-984
界面能密度是表征纳米复合材料与结构界面力学性质的重要物理量.采用分子动力学方法计算了不同面心立方金属晶体构成的双材料纳米薄板结构的界面能密度,分析了界面晶格结构形貌变化及界面效应对原子势能的影响.结果表明:双材料纳米薄板界面具有周期性褶皱状疏密相间的晶格结构形貌,界面上原子势能亦呈现周期性分布特性,而靠近界面的两侧原子势能与板内原子势能具有明显差异.拉格朗日界面能密度和欧拉界面能密度均随双层薄板厚度的增加而增加,最终趋向于块体双材料结构的界面能密度.  相似文献   

13.
14.
张彦欢  刘硕  杨猛  许晶禹 《力学与实践》2022,44(5):1048-1054

针对海上油田低含气率采出液除气作业需求,本文提出了一种被动式轴向旋流除气装置。据此设计了原理样机,接入自循环流动系统中开展了除气特性测试工作。重点考察内部流场气相分布,考察分流比、除气率、处理后液体含气率和压降之间的关系。研究表明,通过合理调整分流比,该装置可将液体含气率降低至0.1%。同时,入口–溢流口相对压降与分流比之间存在线性关系。研究成果有利于进一步降低管式分离系统的空间和重量需求。

  相似文献   

15.
    
The smoothed particle hydrodynamics (SPH) method is one of the powerful Lagrangian tools for modeling free surface flows. However, it suffers from particle disorder, which leads to interpolation and numerical errors. To overcome this problem, several techniques have been introduced until now, among which the particle shifting technique (PST) based on Fick's law is an efficient one. The current form of this method needs tuning parameters to fulfill numerical stability criteria. In this study, to eliminate calibration factors, a new shifting coefficient is derived theoretically based on particle positions before and after shifting, regardless of other parameters such as velocity, pressure, time step intervals, etc. The only required input is particle positions, and the main concern is conserving particle densities in their updated positions. In addition to the proposed PST, a new distribution index (DI) is introduced for measuring the spatial uniformity of particles. Furthering the research, some novel treatments are also studied to improve particle movements near free surface boundary. The proposed idea is only assessed for ISPH method in this study, and its performance in other SPH schemes needs more investigations. Following this innovative method, it is validated by modeling different cases including dam break flow, paddle movement, and elliptical water drop. In all cases, particle arrangements have been improved by means of the modified shifting method. In that sense, good agreements between simulation results with experimental data, analytical solutions, and other numerical methods approve the ability of the developed method in simulating free surface flows.  相似文献   

16.
    
Moving particle semi‐implicit (MPS) method is one of the particle methods, which can be used to analyze incompressible free surface flow without surface tracking by a mesh or a scalar quantity. However, MPS causes unphysical numerical oscillation of pressure with high frequencies. We proposed a new formulation for the source term of Poisson equation of pressure. The proposed source term consists of three parts, one main part and two error‐compensating parts. With proper selection of the coefficients for the error‐compensating parts, we can suppress the unphysical pressure oscillation. Smoother pressure distributions are obtained in hydrostatic pressure and dam break problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
严富怀  岳松林  邱艳宇  王明洋  何勇 《爆炸与冲击》2024,44(11):112201-1-112201-11
冲击波在水土交界面的透射、反射压力计算尚缺乏可靠的计算理论,利用质量守恒方程、动量守恒方程以及水、土的状态方程,分别推导得到冲击波在水、土介质中传播的Hugoniot关系以及p-u曲线,进而从理论上解析得到冲击波在水土交界面处的透射和反射压力。分别建立了水中自由场、水-土分层介质场的二维数值计算模型,其中水、土参数与理论推导时采用的三相介质饱和土计算模型中的参数保持一致。计算结果表明,水土交界面透射、反射压力的理论解与数值解具有高度的一致性。采用80 g TNT炸药,距离水土交界面0.1~0.9 m(比例爆距为0.232~2.089 m/kg1/3)爆炸时,得到的透射、反射压力的理论解与数值解误差均小于7%,根据解析解得出反射压力与水中入射压力之比,反射压力系数在1.6~1.8范围内;距离水土交界面0.5 m时,饱和土的含气量在0~10%范围内变化,得到的透射、反射压力的范围为63.8~70.0 MPa,此时其反射压力系数在1.55~1.70范围内。推导得出的冲击波在水土交界面透射、反射压力的计算方法,物理意义明确、计算精度高,可为开展水下爆炸对水底土中工程结构的毁伤评估提供理论基础。  相似文献   

18.
Research was conducted to quantify the effect of tire variables (section width, diameter, inflation pressure); soil variables (soil moisture content, initial cone index, initial bulk density); and external variables (travel speed, axle load, number of tire passes) on soil compaction and to develop models to assess compaction in agricultural soils. Experiments were conducted in a laboratory soil bin at the Asian Institute of Technology in three soils, namely: clay soil (CS), silty clay loam soil (SCLS), and silty loam soil (SLS). A dimensional analysis technique was used to develop the compaction models. The axle load and the number of tire passes proved to be the most dominant factors which influenced compaction. Up to 13% increase in bulk density and cone index were observed when working at 3 kN axle load in a single pass using a 8.0–16 tire. Most of the compaction occurred during the first three passes of the tire. It was also found that the aspect ratio, tire inflation pressure and soil moisture content have significant effect on soil compaction. The initial cone index did not show significant effect. The compaction models provided good predictions even when tested with actual field data from previous studies. Thus, using the models, a decision support system could be developed which may be able to provide useful recommendations for appropriate soil management practices and solutions to site-specific compaction problems.  相似文献   

19.
对铝-铝同质金属爆炸焊接进行系列实验,研究不同装药比条件下焊接界面的变化特征。所得试件的金相照片表明,焊接界面均具有宏观波状,但其细观形貌又不同于文献报导的连续性波状界面。本次实验得到的三种界面随装药不同而分别呈正弦曲线型、点线型及纯点型,且后两者不再连续。最后利用爆轰波与金属壳表面相互作用理论进行分析,认为焊接界面细观形貌由射流厚度及堆积特征决定,其中界面连续性类似于水流连续性对流量的依赖,当射流厚度不足时难以形成连续界面。  相似文献   

20.
    
This paper presents a new smoothed particle hydrodynamics (SPH) model for simulating multiphase fluid flows with large density ratios. The new SPH model consists of an improved discretization scheme, an enhanced multiphase interface treatment algorithm, and a coupled dynamic boundary treatment technique. The presented SPH discretization scheme is developed from Taylor series analysis with kernel normalization and kernel gradient correction and is then used to discretize the Navier‐Stokes equation to obtain improved SPH equations of motion for multiphase fluid flows. The multiphase interface treatment algorithm involves treating neighboring particles from different phases as virtual particles with specially updated density to maintain pressure consistency and a repulsive interface force between neighboring interface particles into the pressure gradient to keep sharp interface. The coupled dynamic boundary treatment technique includes a soft repulsive force between approaching fluid and solid particles while the information of virtual particles are approximated using the improved SPH discretization scheme. The presented SPH model is applied to 3 typical multiphase flow problems including dam breaking, Rayleigh‐Taylor instability, and air bubble rising in water. It is demonstrated that inherent multiphase flow physics can be well captured while the dynamic evolution of the complex multiphase interfaces is sharp with consistent pressure across the interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号