首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
μ-1,3-Acetamide or acetate bridged, symmetric and asymmetric dicopper(II) complexes viz [Cu2(P1-O)(NHAc)](ClO4)2 (1), [Cu2(P2-O)(OAc)](ClO4)2 (2) and [Cu2(P2′-O)(OAc)(H2O)](ClO4)2 (3) were synthesized by employing classic dinucleating ligands; P1-OH, P2-OH (symmetric), and P2′-OH (asymmetric) having trivial differences in their ligand frame work. Solid state structures of these complexes were determined by X-ray crystallography. In solution, they were also characterized by various spectroscopic techniques, which includes ESI-MS, FT-IR, optical, solution magnetic moment, paramagnetic 1H NMR and EPR. The solution magnetic moment of these complexes at room temperature suggests a weak magnetic interaction between the two Cu(II) centers.  相似文献   

2.
Two mononuclear copper(II) complexes [Cu(L)(NO2)](ClO4) (1) and [Cu(L)(MO4)]2· 5H2O (2) (L = 1,3,10, 12,16,19-hexaazatetracyclo[17,3,1,112.16,04.9]tetracosane) have been synthesized and their structures determined. Both compounds show a distorted square-pyramidal geometry with the two secondary and two tertiary amines of the macrocycle and one ligand coordinated at the axial position. Cyclic voltammetry of the complexes gives two one-electron waves corresponding to CuII/CuIII and CuII/CuI processes. The electronic spectra and electrochemical behavior of the complexes are significantly affected by the nature of the organic ligands.  相似文献   

3.
The reaction of [Cu(L)](ClO4)2 · H2O (L=1,3,10,12,16,19-hexaazatetracyclo[17,3,1,112.16,04.9]tetracosane) with NaN3 and Na2tp yields mononuclear and dinuclear copper(II) complexes, [Cu(L)(N3)](ClO4) (1) and [Cu(L)(μ-tp)](ClO4) · 2H2O (2). These complexes have been characterized by X-ray crystallography, electronic absorption, cyclic voltammetry and magnetic susceptibility. The crystal structure of (1) shows that the copper(II) ion has a distorted square-pyramidal geometry with the two secondary and two tertiary amines of the macrocycle and one nitrogen atom from the azide group coordinating the axial position. The copper(II) ions in (2) are bridged by the terephthalate anion to form a dinuclear complex, in which each copper(II) ion reveals a distorted square-pyramid with four nitrogen atoms of the macrocycle and the oxygen atom of bridging tp ligand. Cyclic voltammetry of the complexes gives two one-electron waves corresponding to CuII/CuIII and CuII/CuI processes. The magnetic susceptibility measurement for (2) exhibits a weak antiferromagnetic interaction between copper(II) centers with a 2J value of −2.21 cm−1 (H = −2JΣS1 · S2). The electronic spectra and electrochemical behavior of the complexes are significantly affected by the nature of the organic ligands.  相似文献   

4.

Two bis-methoxo-bridged dimeric copper(II) complexes, [Cu2(OMe)2(APMD)4](BF4)2 1 and [Cu2(OMe)2(APMD)4](ClO4)2 2, were prepared and characterized by x-ray single-crystal structure analysis and magnetic susceptibility. Complexes 1 and 2 are isomorphous, being composed of discrete [Cu2( w 2-OMe)2(APMD)4]2+ cations and anions with each Cu(II) atom ligated by two pyrimidine nitrogen atoms (Cu-N , 2.01Å) from two APMD ligands and two oxygen atoms (Cu-O , 1.92Å) from the w 2 -methoxo groups in a distorted square-planar geometry. The intramolecular metal-metal separations in the two complexes are ca. 2.95 Å. The intermediate antiferromagnetic exchanges (J , m 270 cm-1) for the two complexes indicate a good overlap between the electronic orbitals of the square-planar copper(II) center via bridging oxygen atoms.  相似文献   

5.
A series of homo‐, heterodinuclear and homotrinuclear copper(II) complexes containing a new Schiff base ligand and 1,10‐phenanthroline were synthesized. Based on results of elemental analyses, FTIR, 1H‐ and 13C‐NMR spectra, conductivity measurements and magnetic susceptibility measurements, the complexes had general compositions {[Cu(L)(H2O)M(phen)2](ClO4)2 [M = Cu(II), Mn(II), Co(II)]} and {[Cu3(L)2(H2O)2](ClO4)2}. The metal:L:phen ratio is 2:1:2 for the dinuclear copper(II) complexes and the metal:L ratio was 3:2 for the trinuclear copper(II) complex. The liquid–liquid extraction of various transition metal cations [Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Pb(II), Cd(II), Hg(II)] from the aqueous phase to the organic phase was carried out using the diimine–dioxime ligand. It was concluded that the ligand can effectively be used in solvent extraction of copper(II) from the aqueous phase to the organic phase. Furthermore, catalytic activitiy of the complexes for the disproportionation of hydrogen peroxide was also investigated in the presence of imidazole. Dinuclear copper(II)–manganese(II) complex has some similarity to manganese catalase in structure and activity. The interaction between these complexes and DNA has also been investigated by agarose gel electrophoresis; we found that the homo‐ and heterodinuclear copper complexes can cleave supercoiled pBR322 DNA to nicked and linear forms in the presence of H2O2. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Reaction of Cu(NO3)2 · 3H2O, 1-(N-salicyalideneimine)-2-(N,N-dimethyl)-aminoethane (HL1), LiClO4, and sodium dicyanamide (Nadca) in aqueous medium affords a dimeric complex [Cu2(L1)21, 5-dca)](ClO4) (1). Single crystal X-ray analysis reveals that 1 is dinuclear with copper(II) ions bridged by a single dicyanamide group in end-to-end fashion. The coordination environment around copper(II) is square planar. Two nitrogens and oxygen of the tridentate Schiff-base ligand (HL1) occupy three coordination sites of the square plane while the remaining site is occupied by the nitrogen of a terminal nitrile of the bridging dca. The nitrogen of the other terminal nitrile group of the μ1,5-dca ligand connects a neighboring [CuL1] unit to yield [Cu2(L1)21,5-dca)](ClO4) (1). Variable temperature magnetic susceptibility measurements show that the magnetic interaction is ferromagnetic (J = 1.93 cm?1). The results of a magnetic model are in good agreement with the experimental data.  相似文献   

7.
Reaction of the N-(2-pyridyl)carbonylaniline ligand (L) with Cu(NO3)2, Cu(ClO4)2, Zn(ClO4)2, Ni(NO3)2 and PdCl2 gives complexes with stoichiometry [Cu(L)2(H2O)2](NO3)2, [Cu(L)2(H2O)2](ClO4)2, [Zn(L)2(H2O)2] (ClO4)2, [Ni(L)2(H2O)Cl](NO3) and PdLCl2. The new complexes were characterized by elemental analyses and infrared spectra. The crystal structures of [Cu(L)2(H2O)2](NO3)2, [Cu(L)2(H2O)2](ClO4)2, and [Zn(L)2(H2O)2](ClO4)2 were determined by X-ray crystallography. The cation complexes [M(L)2(H2O)2] contain copper(II) and zinc(II) with distorted octahedral geometry with two N-(2-pyridyl)carbonylaniline (L) ligands occupying the equatorial sites. The hexa-coordinated metal atoms are bonded to two pyridinic nitrogens, two carbonyl oxygens and two water molecules occupying the axial sites. Both the coordinated water molecules and uncoordinated amide NH groups of the N-(2-pyridyl)carbonylaniline (L) ligands are involved in hydrogen bonding, resulting in infinite hydrogen-bonded chains running in one and two-dimensions.  相似文献   

8.
A binuclear copper(II) complex, [Cu2(μ 1,3-N3)(N3)(pmp)2(ClO4)]ClO4 (pmp = 2-((pyridin-2-yl) methoxy)-1,10-phenanthroline), was synthesized with a single azide as end-to-end bridge ligand, and pmp and perchlorate as ligands. In the crystal, Cu(II) is in a distorted square pyramidal geometry, and a single azide bridges equatorial-axial linking two Cu(II) ions with separation of 5.851 Å. There are π?π stacking interactions involving 1,10-phenanthroline rings. The variable-temperature (2–300 K) magnetic susceptibilities were analyzed using a binuclear Cu(II) magnetic formula and it indicates that there is a very weak ferromagnetic coupling with 2J = 2.82 cm?1.  相似文献   

9.
Three novel copper(II) complex [Cu2(bpa)(μ‐PhCO2)](ClO4)2 ( 1 ), [Cu2(bpa) (μ‐pyz)](ClO4)2 ( 2 ), and [Cu(Hbpa)](ClO4)2·2CH3CN ( 3 ) have been synthesized by the reaction of Hbpa with Cu(ClO4)2·6H2O in the presence and absence of exogenous ligands (where Hbpa = N, N'‐bis(picolinidene‐N‐oxide)‐2‐hydroxy‐1, 3‐diamino‐propane). Molecular structures of these compounds have been elucidated by single crystal X‐ray diffraction. 1 and 2 are both binuclear complexes in which two copper atoms are linked by the endogenous alkoxide oxygen and the exogenous benzoate and pyrazolate ligands, respectively. 3 consists of a one‐dimensional polymeric structure, in which Hbpa functions as a bridging mode.  相似文献   

10.
Two mononuclear and one dinuclear copper(II) complexes, containing neutral tetradentate NSSN type ligands, of formulation [CuII(L1)Cl]ClO4 (1), [CuII(L2)Cl]ClO4 (2) and [CuII2(L3)2Cl2](ClO4)2 (3) were synthesized and isolated in pure form [where L1 = 1,2-bis(2-pyridylmethylthio)ethane, L2 = 1,3-bis(2-pyridylmethylthio)propane and L3 = 1,4-bis(2-pyridylmethylthio)butane]. All these green colored copper(II) complexes were characterized by physicochemical and spectroscopic methods. The dinuclear copper(II) complex 3 changed to a colorless dinuclear copper(I) species of formula [CuI2(L3)2](ClO4)2,0.5H2O (4) in dimethylformamide even in the presence of air at ambient temperature, while complexes 1 and 2 showed no change under similar conditions. The solid-state structures of complexes 1, 2 and 4 were established by X-ray crystallography. The geometry about the copper in complexes 1 and 2 is trigonal bipyramidal whereas the coordination environment about the copper(I) in dinuclear complex 4 is distorted tetrahedral.  相似文献   

11.
A new binuclear copper(II) complex, [Cu21,1-N3)2(PP)2)] ? 2ClO4 (PP = 2,6-dipyrazol-1-yl-pyridine), was synthesized with double azide as asymmetric end-on bridge ligand and 2,6-dipyrazol-1-yl-pyridine as the terminal ligand. The crystal structure was determined by X-ray crystallography. Cu(II) is located in a distorted square pyramidal geometry, and azide bridges the equatorial-axial linking two Cu(II) atoms with a separation of 3.3595(11) Å. The fitting for the data of the variable-temperature (2–300 K) magnetic susceptibilities by using the Curie–Weiss law gives the Weiss temperature θ = ?7.830 K, indicating a very weak anti-ferromagnetic interaction between the bridging Cu(II) complexes.  相似文献   

12.
The syntheses of two polydentate ligands comprising imidazole donors, 1,3-bis[(4-methyl-5-imidazol-1-yl) ethylideneamino]propan-2-ol (BIPO), 1,3-bis[(4-methyl-5-imidazol-1-yl)ethylideneamino]propane (BIP), and their copper(II) complexes [Cu(BIPO)(ClO4)(H2O)] (NO3) · H2O (1) and [Cu(BIP)(ClO4)](ClO4) · 2H2O (2) are reported. Single-crystal structural analyses show that (1) adopts an elongated octahedral geometry with the axial positions occupied by a perchlorate oxygen atom and an aqua ligand, while (2) adopts a distorted square-pyramidal geometry with the axial positions occupied by a perchlorate oxygen atom. Electronic spectra in aqueous solution indicate that both (1) and (2) adopt square-pyramidal geometry. Cyclic voltammetry in aqueous solution gives reduction waves at –0.07 and –0.08 V versus s.c.e. for (1) and (2), respectively. The low reduction potential and general reversibility of the redox reaction of (1) and (2) indicate that BIPO and BIP are flexible enough to stabilize both CuII and CuI forms of the complexes.  相似文献   

13.
Two mononuclear Cu(II) complexes, [Cu(L1H2)](ClO4)1.25Cl0.75·1.25H2O (1) and [Cu(L2H2)](ClO4)2 (2), of the pyridoxal Schiff base ligands N,N′-dipyridoxylethylenediimine (L1H2) and N,N′-dipyridoxyl-1,3-propanediimine (L2H2) are reported. X-ray crystal structures of both complexes are also reported. In both complexes the pyridoxal nitrogen atoms remain protonated. In the solid state, the tetradentate Schiff base ligand is virtually planar in 1, while in 2 the ligand conformation is like an inverted umbrella. In cyclic voltammetry experiments it is found that in these complexes the Cu(III) and Cu(I) states are more easily accessible than in their salen type analogs. The pyridoxal Schiff base complexes are also found to be resistant to oxidative electro-polymerization, unlike their corresponding salicyl aldehyde Schiff base complexes.  相似文献   

14.
A series of binucleating Uganda with fully conjugated π-systems have been synthesized. Homobinuclear copper(II) complexes of the form [(Cu(dien)ClO4)2L]-(ClO4)2, where dien is diethylenetriamine and L is binucleating ligand, were prepared. Mononuclear complexes, with structure similar to that of the preceeding compounds, [Cu(dien)L′(ClO4)](ClO4) were synthesized as reference compounds. The infrared spectra, elctronic spectra and magnetic properties were studied. The inductive effect, steric effect and the effect of the length of the conjugated π-system on the magnetic exchange interaction between the two copper ions are discussed. The electrochemical properties of these complexes were investigated by cyclic voltammetry. The copper ions showed the cooperative phenomena and a quasi-reversible sequential transfer of two electrons at the same potential.  相似文献   

15.
Abstract

Two copper(II) complexes with tetradentate 1,4-disubstituted-1,2,3-triazole ligands, [CuL(MeCN)](ClO4)2 (1) and [CuL′](ClO4)2 (2), have been prepared and characterized by different techniques, including X-ray structure determination, spectroscopic, and electrochemical measurements, as reported elsewhere. Herein, we report the interactions of these complexes, and corresponding free ligands, with human serum albumin (HSA) verifying their relative thermodynamic stability and differences in binding to this protein. Interactions with HSA were verified by CD measurements monitored at 564?nm, up to stoichiometric ratio 2:1 [Complex]:[protein], according to competitive equilibria involving the insertion of copper at the selective N-terminal metal binding site in HSA, and additionally at a secondary nonselective site. Further interactions of these complexes with L-tryptophan residues, and probable supplementary site(s) for the binding, were followed by fluorescence measurements. Analogous experiments with the free L and L′ indicated much weaker interactions. Protein oxidation damage was observed for both complexes, monitored by carbonyl groups formation in the presence of H2O2, probably with the participation of reactive oxygen species. Density functional theory calculations exhibit metal-ligand binding interaction energies similar to [Cu(HSA-Nterminal)]+, and reinforced the experimental results, showing clearly that such triazole ligands are competitive toward copper(II) in biological medium.  相似文献   

16.
Two copper(II) complexes with the general formula [Cu(L)(H2O)](ClO4)2 (1) and [Cu(L)2](ClO4)2 (2), where L=3-((pyridin-2-ylmethyl)amino)propanamide, were synthesized and characterized by elemental analyses, IR, UV–vis spectroscopy techniques and molar conductance measurements. The crystal structures of the complexes were identified by single crystal X-ray diffraction analysis. The tridentate ligand L acts as an N2O-donor through the nitrogen atoms of the pyridine and amine moieties as well the oxygen atom of the amide group. The copper(II) ions in both complexes have distorted octahedron structures so that the Cu(II) ion in 1 is coordinated by an aqua ligand and a tridentate ligand defining the basal plane, and by two oxygen atoms of the perchlorate ions occupying the axial positions. However, two ligands L are coordinated to the copper(II) ion in 2, where four nitrogen atoms of pyridine and amine groups occupy the equatorial positions and two oxygen atoms of the amide moieties exist in the apices. The chromotropism (halo-, solvato- and ionochromism) of both complexes were studied using visible absorption spectroscopy. The complexes are soluble in water and organic solvents and display reversible halochromism. The solvatochromism property is due to structural change followed by solvation of the vacant sites of the complexes. The complexes demonstrated obvious ionochromism and are highly sensitive and selective towards CN? and N3? anions in the presence of other halide and pseudo-halide ions.  相似文献   

17.
《Mendeleev Communications》2022,32(1):123-125
The synthesis, structure and properties of copper(II) perchlorate complexes with antipyrine (AP), [Cu(AP)4(H2O)](ClO4)2 and [Cu(AP)5](ClO4)2, are described and compared with those of alternative compounds containing different AP ligands.  相似文献   

18.
Two macrocyclic Schiff base ligands, L1 [1+1] and L2 [2+2], have been obtained in a one-pot cyclocondensation of 1,4-bis(2-formylphenyl)piperazine and 1,3-diaminopropane. Unfortunately, because of the low solubility of both ligands, their separation was unsuccessful. In the direct reaction of these mixed ligands (L1 and L2) and the appropriate metal ions only [CoL1(NO3)]ClO4, [NiL1](ClO4)2, [CuL1](ClO4)2 and [ZnL1(NO3)]ClO4 complexes have been isolated. All the complexes were characterized by elemental analyses, IR, FAB-MS, conductivity measurements and in the case of the [ZnL1(NO3)]ClO4 complex with NMR spectroscopy.  相似文献   

19.
Three new diclofenac‐based copper(II) complexes, namely tetrakis{μ‐2‐[2‐(2,6‐dichloroanilino)phenyl]acetato‐κ2O:O′}bis(methanol‐κO)copper(II), [Cu2(μ‐dicl)4(CH3OH)2] ( 1 ), bis{2‐[2‐(2,6‐dichloroanilino)phenyl]acetato‐κ2O,O′}bis(1‐vinyl‐1H‐imidazole‐κN3)copper(II), [Cu(dicl)2(vim)2] ( 2 ), and bis{2‐[2‐(2,6‐dichloroanilino)phenyl]acetato‐κ2O,O′}bis(1H‐imidazole‐κN3)copper(II), [Cu(dicl)2(im)2] ( 3 ) [dicl is diclofenac (C14H10Cl2NO2), vim is 1‐vinylimidazole (C5H6N2) and im is imidazole (C3H4N2)], have been synthesized and characterized by elemental analysis, FT–IR spectroscopy, thermal analysis and single‐crystal X‐ray diffraction. X‐ray diffraction analysis shows that complex 1 consists of dimeric units in which the dicl ligand exhibits a bidentate syn,syn‐μ2 coordination mode linking two copper(II) centres. Complexes 2 and 3 have mononuclear units with the general formula [Cu(dicl)2L2] (L is vim or im) in which the CuII ions are octahedrally coordinated by two L and two dicl chelating ligands. The L and dicl ligands both occupy the trans positions of the coordination octahedron. The different coordination modes of dicl in the title complexes were revealed by Fourier transform IR (FT–IR) spectroscopy. The spin matching between the copper(II) centres in the dimeric [Cu2(μ‐dicl)4(CH3OH)2] units was also confirmed by magnetic data to be lower than the spin‐only value and electron paramagnetic resonance (EPR) spectra. The thermal properties of the complexes were investigated by thermogravimetric (TG) and differential thermal analysis (DTA) techniques.  相似文献   

20.
Three binuclear copper(II) complexes, [Cu2(μ-L)(μ-N3)](ClO4)2′ 1-5 EtOH (1), [Cu2(μ-L)(μ-MeO)(ClO4)]-ClO4 - EtOH ( 2 ) and [Cu2(μ-L)(μ-C3H3N2)](ClO4)2 · 2H2O, ( 3 ) where L is the pentadentale bridging ligand derived from 5-(tert-butyl)-2-hydroxybenzene-1, 3-dicarbaldehyde bis(benzoylhydrazone) ( HL ) were synthesized and characterized. The crystal-structure determination of complex 2 provided the following crystal data: monoclinic, space group P21}/a, a = 11.412(2), b = 24.509(4), c = 14.833(4) Å, β = 104.41(2)°, K = 4018(3) Å3, Z = 4. The structure shows that the CuII ions are bridged by the endogenous phenolato O-atom and by an exogenous bridge CH3O?. The analysis of variable-temperature magnetic susceptibility data (4-300 K.) indicates that there is an antiferromagnetic interaction between the CuII ions in these complexes with an exchange parameter (2J) of ?119.1 cm?1 for complex 1 and ?361.8 cm?1 for complex 3 . The effect of some exogenous bridging ligands on magnetic coupling for this type of complex is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号