共查询到20条相似文献,搜索用时 15 毫秒
1.
Julie Andrez Dr. Jacques Pécaut Pierre‐Alain Bayle Dr. Marinella Mazzanti 《Angewandte Chemie (International ed. in English)》2014,53(39):10448-10452
The synthesis, structure, and reactivity of stable homoleptic heterometallic LnL4K2 complexes of divalent lanthanide ions with electron‐rich tris(tert‐butoxy)siloxide ligands are reported. The [Ln(OSi(OtBu)3)4K2] complexes (Ln=Eu, Yb) are stable at room temperature, but they promote the reduction of azobenzene to yield the KPhNNPh radical anion as well as the reductive cleavage of CS2 to yield CS32? as the major product. The EuIII complex of the radical anion PhNNPh is structurally characterized. Moreover, [Yb(OSi(OtBu)3)4K2] can reduce CO2 at room temperature. Release of the reduction products in D2O shows the quantitative formation of both oxalate and carbonate in a 1:2.2 ratio. The bulky siloxide ligands enforce the labile binding of the reduction products providing the opportunity to establish a closed synthetic cycle for the YbII‐mediated CO2 reduction. These studies show that the presence of four electron‐rich siloxide ligands renders their EuII and YbII complexes highly reactive. 相似文献
2.
3.
Dr. Jingjun Hao Boris Vabre Berline Mougang‐Soumé Dr. Davit Zargarian 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(39):12544-12552
This contribution describes the reactivities of CO2, CO, O2, and ArNC with the pincer‐type complexes [(κP,κC,κP′‐POCOP)NiX] (POCOP=(R2POCH2)2CH; R=iPr; X=OSiMe3, NArH; Ar=2,6‐iPr2C6H3). Reaction of the amido derivative with CO2 and CO leads to a simple insertion into the Ni?N bond to give stable carbamate and carbamoyl derivatives, respectively, the pincer ligand backbone remaining intact in both cases. In contrast, the analogous reactions with the siloxide derivative produced kinetically labile insertion products that either revert to the starting material (in the case of CO2) or react further to give the mixed‐valent, dinickel species [(POCOP)NiII{μ,κO,κP,κP′‐OCOCH(CH2CH2OPR2)2}Ni0(CO)2]. The zero‐valent center in the latter compound is ligated by a new ligand arising from transformation of the POCOP ligand backbone. The carbonylation and carboxylation of the siloxido derivative also produced minor quantities of a side‐product identified as the trinickel species, [{(η3‐allyl)Ni(μO,κP‐R2PO)2}2Ni], arising from total dismantling of the POCOP ligand. Similar reactivities were observed with isonitrile, ArNC: reaction with the siloxido derivative resulted in a complex sequence of steps involving initial insertion, a 1,3‐hydrogen shift, and an Arbuzov rearrangement to give [Ni(CNAr)4] and a methacrylamide based on fragments of the POCOP ligand. Oxygenation of the amido and siloxido derivatives led to the phosphinate derivative, [(POCOP)Ni(OP(O)R2)], arising from oxidative transformation of the original ligand frame; the reaction with the Ni‐NHAr derivative also gave ArHNP(O)R2 through a complex N?P bond‐forming reaction. 相似文献
4.
Prof. Stephen T. Liddle 《Angewandte Chemie (International ed. in English)》2015,54(30):8604-8641
Prior to the year 2000, non‐aqueous uranium chemistry mainly involved metallocene and classical alkyl, amide, or alkoxide compounds as well as established carbene, imido, and oxo derivatives. Since then, there has been a resurgence of the area, and dramatic developments of supporting ligands and multiply bonded ligand types, small‐molecule activation, and magnetism have been reported. This Review 1) introduces the reader to some of the specialist theories of the area, 2) covers all‐important starting materials, 3) surveys contemporary ligand classes installed at uranium, including alkyl, aryl, arene, carbene, amide, imide, nitride, alkoxide, aryloxide, and oxo compounds, 4) describes advances in the area of single‐molecule magnetism, and 5) summarizes the coordination and activation of small molecules, including carbon monoxide, carbon dioxide, nitric oxide, dinitrogen, white phosphorus, and alkanes. 相似文献
5.
Activation of Sulfur Dioxide by Bis[N,N′‐diisopropylbenzamidinato(−)]silicon(II): Synthesis of Neutral Six‐Coordinate Silicon(IV) Complexes with Chelating O,O′‐Sulfito or O,O′‐Dithionito Ligands 下载免费PDF全文
Konstantin Junold Felix M. Mück Claudia Kupper Johannes A. Baus Dr. Christian Burschka Prof. Dr. Reinhold Tacke 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(40):12781-12785
The neutral six‐coordinate silicon(IV) complexes 2 and 3 (mixture of cis‐ 3 and trans‐ 3 ) were synthesized by reaction of the donor‐stabilized silylene bis[N,N′‐diisopropylbenzamidinato(?)]silicon(II) ( 1 ) with SO2. Compounds 2 and 3 are the first silicon(IV) complexes with chelating sulfito or dithionito ligands, and 3 is even the first molecular compound with a chelating dithionito ligand. Compounds 2 and 3 were structurally characterized by crystal structure analyses and multinuclear NMR spectroscopic studies in the solid state and in solution. 相似文献
6.
7.
Prof. Dr. Holger Braunschweig Charlotte Brückner Dr. Mehmet Ali Celik Dr. Klaus Dück Dr. Florian Hupp Dr. Thomas Kramer Johannes Krebs Dr. Ivo Krummenacher 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(31):11056-11064
Taking advantage of an improved synthesis of [Ti(η6‐C6H6)2], we report here the first examples of ansa‐bridged bis(benzene) titanium complexes. Deprotonation of [Ti(η6‐C6H6)2] with nBuLi in the presence of N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine (pmdta) leads to the corresponding 1,1′‐dilithio salt [Ti(η6‐C6H5Li)2] ? pmdta that enables the preparation of the first one‐ and two‐atom‐bridged complexes by simple salt metathesis. The ansa complexes were fully characterized (NMR spectroscopy, UV/Vis spectroscopy, elemental analysis, and X‐ray crystallography) and further studied electrochemically and computationally. Moreover, [Ti(η6‐C6H6)2] is found to react with the Lewis base 1,3‐dimethylimidazole‐2‐ylidene (IMe) to give the bent sandwich complex [Ti(η6‐C6H6)2(IMe)]. 相似文献
8.
Luisa Gregoli Dr. Chiara Danieli Dr. Anne‐Laure Barra Dr. Petr Neugebauer Giovanna Pellegrino Dr. Giordano Poneti Roberta Sessoli Prof. Dr. Andrea Cornia Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(26):6456-6467
Tunable single‐molecule magnets : The spin‐level landscape in a series of FeIII4 single‐molecule magnets with propeller‐like structure was analyzed by means of high‐frequency EPR spectroscopy. The zero‐field splitting parameter D of the ground S=5 spin state correlates strongly with the pitch of the propeller γ (see picture), and thus provides a simple link between molecular structure and magnetic behavior.
9.
10.
11.
Dominik Huber P. G. Anil Kumar Paul S. Pregosin Igor S. Mikhel Antonio Mezzetti 《Helvetica chimica acta》2006,89(8):1696-1715
Chloride abstraction from the half‐sandwich complexes [RuCl2(η6‐p‐cymene)(P*‐κP)] ( 2a : P* = (Sa,R,R)‐ 1a = (1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl bis[(1R)‐1‐phenylethyl)]phosphoramidite; 2b : P* = (Sa,R,R)‐ 1b = (1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl bis[(1R)‐(1‐(1‐naphthalen‐1‐yl)ethyl]phosphoramidite) with (Et3O)[PF6] or Tl[PF6] gives the cationic, 18‐electron complexes dichloro(η6‐p‐cymene){(1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl {(1R)‐1‐[(1,2‐η)‐phenyl]ethyl}[(1R)‐1‐phenylethyl]phosphoramidite‐κP}ruthenium(II) hexafluorophosphate ( 3a ) and [Ru(S)]‐dichloro(η6‐p‐cymene){(1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl {(1R)‐1‐[(1,2‐η)‐naphthalen‐1‐yl]ethyl}[(1R)‐1‐(naphthalen‐1‐yl)ethyl]phosphoramidite‐κP)ruthenium(II) hexafluorophosphate ( 3b ), which feature the η2‐coordination of one aryl substituent of the phosphoramidite ligand, as indicated by 1H‐, 13C‐, and 31P‐NMR spectroscopy and confirmed by an X‐ray study of 3b . Additionally, the dissociation of p‐cymene from 2a and 3a gives dichloro{(1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl [(1R)‐(1‐(η6‐phenyl)ethyl][(1R)‐1‐phenylethyl]phosphoramidite‐κP)ruthenium(II) ( 4a ) and di‐μ‐chlorobis{(1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl [(1R)‐1‐(η6‐phenyl)ethyl][(1R)‐1‐phenylethyl]phosphoramidite‐κP}diruthenium(II) bis(hexafluorophosphate) ( 5a ), respectively, in which one phenyl group of the N‐substituents is η6‐coordinated to the Ru‐center. Complexes 3a and 3b catalyze the asymmetric cyclopropanation of α‐methylstyrene with ethyl diazoacetate with up to 86 and 87% ee for the cis‐ and the trans‐isomers, respectively. 相似文献
12.
Lanthanide Complexes with Multidentate Oxime Ligands as Single‐Molecule Magnets and Atmospheric Carbon Dioxide Fixation Systems 下载免费PDF全文
Dr. Małgorzata Hołyńska Dr. Rodolphe Clérac Mathieu Rouzières 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(38):13321-13329
The synthesis, structure, and magnetic properties of five lanthanide complexes with multidentate oxime ligands are described. Complexes 1 and 2 ( 1 : [La2(pop)2(acac)4(CH3OH)], 2 : [Dy2(pop)(acac)5]) are synthesized from the 2‐hydroxyimino‐N‐[1‐(2‐pyridyl)ethylidene]propanohydrazone (Hpop) ligand, while 3 , 4 , and 5 ( 3 : [Dy2(naphthsaoH)2(acac)4H(OH)]?0.85 CH3CN?1.58 H2O; 4 : [Tb2(naphthsaoH)2(acac)4H(OH)]?0.52 CH3CN?1.71 H2O; 5 : [La6(CO3)2(naphthsao)5 (naphthsaoH)0.5(acac)8(CO3)0.5(CH3OH)2.76H5.5(H2O)1.24]?2.39 CH3CN?0.12 H2O) contain 1‐(1‐hydroxynaphthalen‐2‐yl)‐ethanone oxime (naphthsaoH2). In 1 – 4 , dinuclear [Ln2] complexes crystallize, whereas hexanuclear LaIII complex 5 is formed after fixation of atmospheric carbon dioxide. DyIII‐based complexes 2 and 3 display single‐molecule‐magnet properties with energy barriers of 27 and 98 K, respectively. The presence of a broad and unsymmetrical relaxation mode observed in the ac susceptibility data for 3 suggest two different dynamics of the magnetization which might be a consequence of independent relaxation processes of the two different Dy3+ ions. 相似文献
13.
14.
The synthesis, characterization and biological activity of four cyclometalated Ir (III) complexes ( Ir1 ‐ Ir4 ) containing different phosphine‐sulfonate ligands are reported. Most of these complexes showed good activity against A549 cancer cell lines and the human HeLa cervical cell lines. Spectroscopic properties study displays that all four complexes show rich fluorescence with emission maxima in the range of 474–510 nm. Fluorescence property of these complexes provides a tool to investigate the microscopic mechanism by confocal microscopy. Notably, the typical Ir (III) complex Ir4 can specially localize to lysosome, damage it and induce cell death via apoptosis. In addition, Ir4 enters into A549 cancer cells dominantly through energy‐dependent pathway. 相似文献
15.
Prof. Louise A. Berben 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(7):2734-2742
Non‐Innocent ligand complexes of aluminum are described in this Concept article, beginning with a discussion of their synthesis, and then structural and electronic characterization. The main focus concerns the ability of the ligands in these complexes to mediate proton transfer reactions. As examples, aluminum–ligand cooperation in the activation of polar bonds is described, as is the importance of hydrogen bonding to stabilization of a transition state for β‐hydride abstraction. Taken together these reactions enable catalytic processes such as the dehydrogenation of formic acid. 相似文献
16.
Feng Gao Hui Chao Feng Zhou Lian‐Cai Xu Kang‐Cheng Zheng Liang‐Nian Ji 《Helvetica chimica acta》2007,90(1):36-51
Two novel chiral ruthenium(II) complexes, Δ‐[Ru(bpy)2(dmppd)]2+ and Λ‐[Ru(bpy)2(dmppd)]2+ (dmppd = 10,12‐dimethylpteridino[6,7‐f] [1,10]phenanthroline‐11,13(10H,12H)‐dione, bpy = 2,2′‐bipyridine), were synthesized and characterized by elemental analysis, 1H‐NMR and ES‐MS. The DNA‐binding behaviors of both complexes were studied by UV/VIS absorption titration, competitive binding experiments, viscosity measurements, thermal DNA denaturation, and circular‐dichroism spectra. The results indicate that both chiral complexes bind to calf‐thymus DNA in an intercalative mode, and the Δ enantiomer shows larger DNA affinity than the Λ enantiomer does. Theoretical‐calculation studies for the DNA‐binding behaviors of these complexes were carried out by the density‐functional‐theory method. The mechanism involved in the regulating and controlling of the DNA‐binding abilities of the complexes was further explored by the comparative studies of [Ru(bpy)2(dmppd)]2+ and of its parent complex [Ru(bpy)2(ppd)]2+ (ppd = pteridino[6,7‐f] [1,10]phenanthroline‐11,13 (10H,12H)‐dione). 相似文献
17.
Chiral Half‐sandwich Pentamethylcyclopentadienyl Rhodium(III) and Iridium(III) Complexes with Schiff Bases from Salicylaldehyde and α‐Amino Acid Esters [1] A series of diastereoisomeric half‐sandwich complexes with Schiff bases from salicylaldehyde and L‐α‐amino acid esters including chiral metal atoms, [(η5‐C5H5)(Cl)M(N,O‐Schiff base)], has been obtained from chloro bridged complexes [(η5‐C5Me5)(Cl)M(μ‐Cl)]2 (M = Rh, Ir). Abstraction of chloride from these complexes with Ag[BF4] or Ag[SO3CF3] affords the highly sensitive compounds [(η5‐C5Me5)M(N,O‐Schiff base]+X? (M = Rh, Ir; X = BF4, CF3SO3) to which PPh3 can be added under formation of [(η5‐C5Me5)M(PPh3)(N,O‐Schiff base)]+X?. The diastereoisomeric ratio of the complexes ( 1 ‐ 7 and 11 ‐ 12 ) has been determined from NMR spectra. 相似文献
18.
Characterization of Mononuclear Non‐heme Iron(III)‐Superoxo Complex with a Five‐Azole Ligand Set 下载免费PDF全文
Dr. Frédéric Oddon Yosuke Chiba Dr. Jun Nakazawa Dr. Takehiro Ohta Prof. Dr. Takashi Ogura Prof. Dr. Shiro Hikichi 《Angewandte Chemie (International ed. in English)》2015,54(25):7336-7339
Reaction of O2 with a high‐spin mononuclear iron(II) complex supported by a five‐azole donor set yields the corresponding mononuclear non‐heme iron(III)–superoxo species, which was characterized by UV/Vis spectroscopy and resonance Raman spectroscopy. 1H NMR analysis reveals diamagnetic nature of the superoxo complex arising from antiferromagnetic coupling between the spins on the low‐spin iron(III) and superoxide. This superoxo species reacts with H‐atom donating reagents to give a low‐spin iron(III)–hydroperoxo species showing characteristic UV/Vis, resonance Raman, and EPR spectra. 相似文献
19.
Identification and X‐ray Co‐crystal Structure of a Small‐Molecule Activator of LFA‐1‐ICAM‐1 Binding 下载免费PDF全文
Dr. Martin Hintersteiner Dr. Jörg Kallen Mario Schmied Christine Graf Dr. Thomas Jung Gemma Mudd Dr. Steven Shave Dr. Hubert Gstach Prof. Manfred Auer 《Angewandte Chemie (International ed. in English)》2014,53(17):4322-4326
Stabilization of protein–protein interactions by small molecules is a concept with few examples reported to date. Herein we describe the identification and X‐ray co‐crystal structure determination of IBE‐667, an ICAM‐1 binding enhancer for LFA‐1. IBE‐667 was designed based on the SAR information obtained from an on‐bead screen of tagged one‐bead one‐compound combinatorial libraries by confocal nanoscanning and bead picking (CONA). Cellular assays demonstrate the activity of IBE‐667 in promoting the binding of LFA‐1 on activated immune cells to ICAM‐1. 相似文献
20.
The Activation of Sulfur Hexafluoride at Highly Reduced Low‐Coordinate Nickel Dinitrogen Complexes 下载免费PDF全文
Dipl.‐Chem. Patrick Holze Dipl.‐Chem. Bettina Horn Prof. Dr. Christian Limberg Dipl.‐Chem. Corinna Matlachowski Dr. Stefan Mebs 《Angewandte Chemie (International ed. in English)》2014,53(10):2750-2753
The greenhouse gas sulfur hexafluoride is the common standard example in the literature of a very inert inorganic small molecule that is even stable against O2 in an electric discharge. However, a reduced β‐diketiminate nickel species proved to be capable of converting SF6 into sulfide and fluoride compounds at ambient standard conditions. The fluoride product complex features an unprecedented [NiF]+ unit, where the Ni atom is only three‐coordinate, while the sulfide product exhibits a rare almost linear [Ni(μ‐S)Ni]2+ moiety. The reaction was monitored applying 1H NMR, IR and EPR spectroscopic techniques resulting in the identification of an intermediate nickel complex that gave insight into the mechanism of the eight‐electron reduction of SF6. 相似文献