首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In this work, we utilize the galvanic displacement synthesis and make it a general and efficient method for the preparation of Au? M (M=Au, Pd, and Pt) core–shell nanostructures with porous shells, which consist of multilayer nanoparticles. The method is generally applicable to the preparation of Au? Au, Au? Pd, and Au? Pt core–shell nanostructures with typical porous shells. Moreover, the Au? Au isomeric core–shell nanostructure is reported for the first time. The lower oxidation states of AuI, PdII, and PtII are supposed to contribute to the formation of porous core–shell nanostructures instead of yolk‐shell nanostructures. The electrocatalytic ethanol oxidation and oxygen reduction reaction (ORR) performance of porous Au? Pd core–shell nanostructures are assessed as a typical example for the investigation of the advantages of the obtained core–shell nanostructures. As expected, the Au? Pd core–shell nanostructure indeed exhibits a significantly reduced overpotential (the peak potential is shifted in the positive direction by 44 mV and 32 mV), a much improved CO tolerance (If/Ib is 3.6 and 1.63 times higher), and an enhanced catalytic stability in comparison with Pd nanoparticles and Pt/C catalysts. Thus, porous Au? M (M=Au, Pd, and Pt) core–shell nanostructures may provide many opportunities in the fields of organic catalysis, direct alcohol fuel cells, surface‐enhanced Raman scattering, and so forth.  相似文献   

2.
Metal–organic frameworks (MOFs) have demonstrated great potentials in a variety of important applications. To enhance the inherent properties and endow materials with multifunctionality, the rational design and synthesis of MOFs with nanoscale porosity and hollow feature is highly desired and remains a great challenge. In this work, the formation of a series of well‐defined MOF (MOF‐5, FeII‐MOF‐5, FeIII‐MOF‐5) hollow nanocages by a facile solvothermal method, without any additional supporting template is reported. A surface‐energy‐driven mechanism may be responsible for the formation of hollow nanocages. The addition of pre‐synthesized poly(vinylpyrrolidone)‐ (PVP) capped noble‐metal nanoparticles into the synthetic system of MOF hollow nanocages yields the yolk–shell noble metal@MOF nanostructures. The present strategy to fabricate hollow and yolk–shell nanostructures is expected to open up exciting opportunities for developing a novel class of inorganic–organic hybrid functional nanomaterials.  相似文献   

3.
Hollow nanostructures are of great interest for a wide variety of applications. Despite the great advances, synthesis of anisotropic hollow structures is still very challenging. In this work, we have developed a simple sacrificial template method to synthesize uniform NixCo3?xS4 hollow nanoprisms with tunable composition. Tetragonal nanoprisms of nickel–cobalt acetate hydroxide precursors with controllable Ni/Co molar ratios are first synthesized and used as the sacrificial templates. After a sulfidation process with thioacetamide (TAA) in ethanol, the solid precursor prisms can be transformed into the corresponding NixCo3?xS4 hollow nanoprisms with a well‐defined hollow interior. The intriguing structural and compositional features are beneficial for electrochemical applications. Impressively, the resultant NixCo3?xS4 hollow prisms manifest a high specific capacitance with enhanced cycling stability, making them potential electrode materials for supercapacitors.  相似文献   

4.
We report a simple and template‐free strategy for the synthesis of hollow and yolk‐shell iron oxide (FeOx) nanostructures sandwiched between few‐layer graphene (FLG) sheets. The morphology and microstructure of this material are characterized in detail by X‐ray diffraction, X‐ray absorption near‐edge structure, X‐ray photoelectron spectroscopy, Raman spectroscopy, scanning and transmission electron microscopy. Its properties are evaluated as negative electrode material for Li‐ion batteries and compared with those of solid FeOx/FLG and two commercial iron oxides. In all cases, the content of carbon in the electrode has a great influence on the performance. The use of pristine FLG improves the capacity retention and further enhancement is achieved with the hollow structure. For a low carbon loading of 18 wt. %, the presence of metallic iron in the hollow and yolk‐shell FeOx/FLG composite significantly enhances the capacity retention, albeit with a relatively lower initial reversible capacity, retaining above 97 % after 120 cycles at 1000 mA g?1 in the voltage range of 0.1–3.0 V.  相似文献   

5.
Herein, we report an epitaxial‐growth‐mediated method to grow face‐centered cubic (fcc) Ru, which is thermodynamically unfavorable in the bulk form, on the surface of Pd–Cu alloy. Induced by the galvanic replacement between Ru and Pd–Cu alloy, a shape transformation from a Pd–Cu@Ru core–shell to a yolk–shell structure was observed during the epitaxial growth. The successful coating of the unconventional crystallographic structure is critically dependent on the moderate lattice mismatch between the fcc Ru overlayer and PdCu3 alloy substrate. Further, both fcc and hexagonal close packed (hcp) Ru can be selectively grown through varying the lattice spacing of the Pd–Cu substrate. The presented findings provide a new synthetic pathway to control the crystallographic structure of metal nanomaterials.  相似文献   

6.
Atomically precise alloying and de‐alloying processes for the formation of Ag–Au and Cu–Au nanoparticles of 25‐metal‐atom composition (referred to as AgxAu25?x(SR)18 and CuxAu25?x(SR)18, in which R=CH2CH2Ph) are reported. The identities of the particles were determined by matrix‐assisted laser desorption ionization mass spectroscopy (MALDI‐MS). Their structures were probed by fragmentation analysis in MALDI‐MS and comparison with the icosahedral structure of the homogold Au25(SR)18 nanoparticles (an icosahedral Au13 core protected by a shell of Au12(SR)18). The Cu and Ag atoms were found to preferentially occupy the 13‐atom icosahedral sites, instead of the exterior shell. The number of Ag atoms in AgxAu25?x(SR)18 (x=0–8) was dependent on the molar ratio of AgI/AuIII precursors in the synthesis, whereas the number of Cu atoms in CuxAu25?x(SR)18 (x=0–4) was independent of the molar ratio of CuII/AuIII precursors applied. Interestingly, the CuxAu25?x(SR)18 nanoparticles show a spontaneous de‐alloying process over time, and the initially formed CuxAu25?x(SR)18 nanoparticles were converted to pure Au25(SR)18. This de‐alloying process was not observed in the case of alloyed AgxAu25?x(SR)18 nanoparticles. This contrast can be attributed to the stability difference between CuxAu25?x(SR)18 and AgxAu25?x(SR)18 nanoparticles. These alloyed nanoparticles are promising candidates for applications such as catalysis.  相似文献   

7.
We have synthesized hollow Au nanocages embedded within thick porous shells of cuprous oxide (Cu2O). The shell causes a significant redshift of the localized surface plasmon resonance of Au into the near‐IR. Electron–phonon coupling in the Au nanocage is 3–6 times faster in the core–shell structure due to the higher thermal conductivity of Cu2O compared to water. Coherent phonon oscillations within the Au lattice are characterized by a breathing mode of the entire structure for both bare and core–shell nanocages, an assignment made through the use of structural mechanics simulations. The experimental frequencies are obtained through simulations by selectively applying a force to the shell of the core–shell structure. We interpret this as rapid thermal expansion of the gold leading to a mechanical force that acts on the shell.  相似文献   

8.
The selected‐control preparation of uniform core–shell and yolk–shell architectures, which combine the multiple functions of a superparamagnetic iron oxide (SPIO) core and europium‐doped yttrium oxide (Y2O3:Eu) shell in a single material with tunable fluorescence and magnetic properties, has been successfully achieved by controlling the heat‐treatment conditions. Furthermore, the shell thickness and interior cavity of SPIO@Y2O3:Eu core–shell and yolk–shell nanostructures can be precisely tuned. Importantly, as‐prepared SPIO@Y2O3:Eu yolk–shell nanocapsules (NCs) modified with amino groups as cancer‐cell fluorescence imaging agents are also demonstrated. To the best of our knowledge, this is the first report on the selected‐control fabrication of uniform SPIO@Y2O3:Eu core–shell nanoparticles and yolk–shell NCs. The combined magnetic manipulation and optical monitoring of magnetic–fluorescent SPIO@Y2O3:Eu yolk–shell NCs will open up many exciting opportunities in dual imaging for targeted delivery and thermal therapy.  相似文献   

9.
A simple and versatile method for general synthesis of uniform one‐dimensional (1D) MxCo3?xS4 (M=Ni, Mn, Zn) hollow tubular structures (HTSs), using soft polymeric nanofibers as a template, is described. Fibrous core–shell polymer@M‐Co acetate hydroxide precursors with a controllable molar ratio of M/Co are first prepared, followed by a sulfidation process to obtain core–shell polymer@MxCo3?xS4 composite nanofibers. The as‐made MxCo3?xS4 HTSs have a high surface area and exhibit exceptional electrochemical performance as electrode materials for hybrid supercapacitors. For example, the MnCo2S4 HTS electrode can deliver specific capacitance of 1094 F g?1 at 10 A g?1, and the cycling stability is remarkable, with only about 6 % loss over 20 000 cycles.  相似文献   

10.
The full harvest of solar energy by semiconductors requires a material that simultaneously absorbs across the whole solar spectrum and collects photogenerated electrons and holes separately. The stepwise integration of three semiconducting sulfides, namely ZnS, CdS, and Cu2?xS, into a single nanocrystal, led to a unique ternary multi‐node sheath ZnS–CdS–Cu2?xS heteronanorod for full‐spectrum solar energy absorption. Localized surface plasmon resonance (LSPR) in the nonstoichiometric copper sulfide nanostructures enables effective NIR absorption. More significantly, the construction of pn heterojunctions between Cu2?xS and CdS leads to staggered gaps, as confirmed by first‐principles simulations. This band alignment causes effective electron–hole separation in the ternary system and hence enables efficient solar energy conversion.  相似文献   

11.
Coupling two different materials to create a hybrid nanostructured system is a powerful strategy for achieving synergistically enhanced properties and advanced functionalities. In the case of Au and Cu2−xS, their combination on the nanoscale results in dual plasmonic Au−Cu2−xS nanocomposites that exhibit intense photon absorption in both the visible and the near-infrared spectral ranges. Their strong light-absorbing properties translate to superior photothermal transduction efficiency, making them attractive in photothermal-based applications. There are several nanostructure configurations that are possible for the Au−Cu2−xS system, and the successful fabrication of a particular architecture often requires a carefully planned synthetic strategy. In this Minireview, the different synthetic approaches that can be employed to produce rationally designed Au−Cu2−xS nanocomposites are presented, with a focus on the experimental protocols that can lead to heterodimer, core–shell, reverse core–shell, and yolk–shell configurations. The photothermal behavior of these materials is also discussed, providing a glimpse of their potential use as photothermally active agents in therapeutic and theranostic applications.  相似文献   

12.
Despite significant advancement in preparing various hollow structures by Ostwald ripening, one common problem is the intractable uncontrollability of initiating Ostwald ripening due to the complexity of the reaction processes. Here, a new strategy on Hansen solubility parameter (HSP)‐guided solvent selection to initiate Ostwald ripening is proposed. Based on this comprehensive principle for solvent optimization, N,N‐dimethylformamide (DMF) was screened out, achieving accurate synthesis of interior space‐tunable MoSe2 spherical structures (solid, core–shell, yolk‐shell and hollow spheres). The resultant MoSe2 structures exhibit architecture‐dependent electrochemical performances towards hydrogen evolution reaction and sodium‐ion batteries. This pre‐solvent selection strategy can effectively provide researchers great possibility in efficiently synthesizing various hollow structures. This work paves a new pathway for deeply understanding Ostwald ripening.  相似文献   

13.
Hollow mesoporous SiO2 (mSiO2) nanostructures with movable nanoparticles (NPs) as cores, so‐called yolk‐shell nanocapsules (NCs), have attracted great research interest. However, a highly efficient, simple and general way to produce yolk‐mSiO2 shell NCs with tunable functional cores and shell compositions is still a great challenge. A facile, general and reproducible strategy has been developed for fabricating discrete, monodisperse and highly uniform yolk‐shell NCs under mild conditions, composed of mSiO2 shells and diverse functional NP cores with different compositions and shapes. These NPs can be Fe3O4 NPs, gold nanorods (GNRs), and rare‐earth upconversion NRs, endowing the yolk‐mSiO2 shell NCs with magnetic, plasmonic, and upconversion fluorescent properties. In addition, multifunctional yolk‐shell NCs with tunable interior hollow spaces and mSiO2 shell thickness can be precisely controlled. More importantly, fluorescent‐magnetic‐biotargeting multifunctional polyethyleneimine (PEI)‐modified fluorescent Fe3O4@mSiO2 yolk‐shell nanobioprobes as an example for simultaneous targeted fluorescence imaging and magnetically guided drug delivery to liver cancer cells is also demonstrated. This synthetic approach can be easily extended to the fabrication of multifunctional yolk@mSiO2 shell nanostructures that encapsulate various functional movable NP cores, which construct a potential platform for the simultaneous targeted delivery of drug/gene/DNA/siRNA and bio‐imaging.  相似文献   

14.
Triangular Ag–Pd alloy nanoframes were successfully synthesized through galvanic replacement by using Ag nanoprisms as sacrificial templates. The ridge thickness of the Ag‐Pd alloy nanoframes could be readily tuned by adjusting the amount of the Pd source during the reaction. These obtained triangular Ag–Pd alloy nanoframes exhibit superior electrocatalytic activity for the methanol oxidation reaction as compared with the commercial Pd/C catalyst due to the alloyed Ag–Pd composition as well as the hollow‐framed structures. This work would be highly impactful in the rational design of future bimetallic alloy nanostructures with high catalytic activity for fuel cell systems.  相似文献   

15.
Based on the EHMO approach, an approximate treatment of electronic energy-band structures is suggested. By employing this treatment, computations of the band structures for the Al-doped superconductors YBa2Cu3–xAlxO7 + δ were carried out. It is shown by analysis of the band structures and the density of states that the 2D Cu–O planes in the Y? Ba–Cu? O superconducting system play a dominant role in superconductivity, whereas the 1D Cu? O ribbons have indirectly an influence on superconductivity through the connection of the O(4) atoms to two Cu? O planes. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
《中国化学会会志》2018,65(9):1028-1034
Three‐dimensionally ordered macroporous (3DOM) CuxCe‐M (x denote the mole ratio of Cu/[Ce + Cu]) oxide catalysts with large pore sizes and interconnected macroporous frameworks were successfully synthesized using a polymethyl methacrylate template method. The 3DOM structure improves the contact efficiency between catalyst and soot, which benefits soot elimination in the low temperature range. The low redox barriers of the 3DOM Cu–Ce solid solution also facilitate the elimination of the soot. The 3DOM Cu0.1Ce catalysts exhibit the highest catalytic activity with maximum soot oxidation rate temperatures at 375 and 351 °C in the air and NO x atmosphere, respectively. The NO x‐TPD results demonstrate that the NO2 produced in the Ce0.1Cu‐M sample plays a curial role in improving the soot oxidation performance. Meanwhile, the NO‐DRIFTs reveal that the nitrates stored in the Cu0.1Ce‐M sample also had a promotional effect on the soot elimination.  相似文献   

17.
Monodisperse bimetallic Pd–Cu nanoparticles with controllable size and composition were synthesized by a one‐step multiphase ethylene glycol (EG) method. Adjusting the stoichiometric ratio of the Pd and Cu precursors afforded nanoparticles with different compositions, such as Pd85–Cu15, Pd56–Cu44, and Pd39–Cu61. The nanoparticles were separated from the solution mixture by extraction with non‐polar solvents, such as n‐hexane. Monodisperse bimetallic Pd–Cu nanoparticles with narrow size‐distribution were obtained without the need for a size‐selection process. Capping ligands that were bound to the surface of the particles were removed through heat treatment when the as‐prepared nanoparticles were loaded onto a Vulcan XC‐72 carbon support. Supported bimetallic Pd–Cu nanoparticles showed enhanced electrocatalytic activity towards methanol oxidation compared with supported Pd nanoparticles that were fabricated according to the same EG method. For a bimetallic Pd–Cu catalyst that contained 15 % Cu, the activity was even comparable to the state‐of‐the‐art commercially available Pt/C catalysts. A STEM‐HAADF study indicated that the formation of random solid‐solution alloy structures in the bimetallic Pd85–Cu15/C catalysts played a key role in improving the electrochemical activity.  相似文献   

18.
Hydrogen produced from water under solar energy is an ideal clean energy source, and the efficiency of hydrogen production usually depends on the catalytic systems based on new compounds and/or a unique nanostructure. Herein, well‐defined cube‐in‐cube hollow Cu9S5 nanostructures have been successfully prepared with Cu2O nanocubes and CS2 as precursors, and single‐shell hollow Cu9S5 nanocubes could be obtained by replacing CS2 with Na2S. The formation mechanism of cube‐in‐cube hollow nanostructures has been proposed based on the Kirkendell effect and an outward self‐assembly process. Further studies revealed that the cube‐in‐cube hollow Cu9S5 nanostructures exhibited better photocatalytic activity toward solar H2 evolution and would be a promising photocatalyst in the solar hydrogen industry.  相似文献   

19.
Hydrogen evolution reaction/Oxygen evolution reaction (HER/OER) synergy would be the most important issue for overall water splitting. The Pt-free 1T/2H-MoS2/CdS/MnOx hollow core–shell nanocomposites are fabricated via a continuous hydrothermal–chemical method; therefore, the OER co-catalysts MnOx and CdS shell are deposited on the surface of SiO2 nanosphere templates continuously via hydrothermal–chemical method. Subsequently, the SiO2 templates are etched via chemical method and the 2H-MoS2/CdS hollow core–shell heterojunction and 1T-MoS2 HER co-catalyst are introduced via one-step hydrothermal method. Evaluated by photocatalytic performance, the 1T/2H-MoS2/CdS/MnOx exhibits an enhanced HER performance of about ~50 folds than that of single CdS hollow nanosphere, and achieves a decent overall water splitting performance of about ~1668.00(H2)/824.61(O2) μmol/g?h, which can be mainly ascribed to the well HER/OER synergy and formation of hollow core–shell structure. Therefore, the 1T-MoS2 with quick electron transport and decent solid/liquid interface can promote the photogenerated electron diffusing, the MnOx with mixed Mn3+/Mn4+ ions can activate the hole-related species for OH? oxidation and promote H2O2 decomposition, the 2H–MoS2/CdS heterojunction can separate the charge carrier and meet the potential to achieve overall water splitting. Additionally, the 1T/2H-MoS2 with decent lattice matching can improve the charge carrier transport, the 1T-MoS2 with sufficient specific surface areas can increase active sites and the hollow core–shell structure can increase solar efficiency which is also beneficial for enhancing the overall water splitting performance and stability.  相似文献   

20.
A continuous, single‐step, and large‐scale preparation of Pd‐catalyst‐loaded SnO2 yolk–shell spheres is demonstrated. These nanostructures show an unusually high response and selectivity to methyl benzenes, such as xylene and toluene, with very low cross‐responses to various interfering gases, making them suitable for precise monitoring of indoor air quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号