首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the roles of various parameters in orchestrating the preferential chiral molecular organization in supramolecular self‐assembly processes is of great significance in designing novel molecular functional systems. Cyclic dipeptide (CDP) chiral auxiliary‐functionalized naphthalenediimides (NCDPs 1 – 6 ) have been prepared and their chiral self‐assembly properties have been investigated. Detailed photophysical and circular dichroism (CD) studies have unveiled the crucial role of the solvent in the chiral aggregation of these NCDPs. NCDPs 1 – 3 form supramolecular helical assemblies and exhibit remarkable chiroptical switching behaviour (M‐ to P‐type) depending on the solvent composition of HFIP and DMSO. The strong influence of solvent composition on the supramolecular chirality of NCDPs has been further corroborated by concentration and solid‐state thin‐film CD studies. The chiroptical switching between supramolecular aggregates of opposite helicity (M and P) has been found to be reversible, and can be achieved through cycles of solvent removal and redissolution in solvent mixtures of specific composition. The control molecular systems (NCDPs 4 – 6 ), with an achiral or D ‐isomer second amino acid in the CDP auxiliary, did not show chiral aggregation properties. The substantial roles of hydrogen bonding and π–π interactions in the assembly of the NCDPs have been validated through nuclear magnetic resonance (NMR), photophysical, and computational studies. Quantum chemical calculations at the ab initio, semiempirical, and density functional theory levels have been performed on model systems to understand the stabilities of the right (P‐) and left (M‐) handed helical supramolecular assemblies and the nature of the intermolecular interactions. This study emphasizes the role of CDP chiral auxiliaries on the solvent‐induced helical assembly and reversible chiroptical switching of naphthalenediimides.  相似文献   

2.
Asymmetric C(sp)? C(sp2) bond formation to give enantiomerically enriched 1,3‐butadienyl‐2‐carbinols occurred through a homoallenylboration reaction between a 2,3‐dienylboronic ester and aldehydes under the catalysis of a chiral phosphoric acid (CPA). A diverse range of enantiomerically enriched butadiene‐substituted secondary alcohols with aryl, heterocyclic, and aliphatic substituents were synthesized in very high yield with high enantioselectivity. Preliminary density functional theory (DFT) calculations suggest that the reaction proceeds via a cyclic six‐membered chairlike transition state with essential hydrogen‐bond activation in the allene reagent. The catalytic reaction was amenable to the gram‐scale synthesis of a chiral alkyl butadienyl adduct, which was converted into an interesting optically pure compound bearing a benzo‐fused spirocyclic cyclopentenone framework.  相似文献   

3.
《化学:亚洲杂志》2018,13(19):2847-2853
This paper describes the peculiar co‐assembly supramolecular polymerization behavior of triphenylamine trisamide derivatives with d ‐alanine ( T‐ala ) or glycine ( T‐gly ) moieties. Concentration and temperature‐dependent circular dichroism (CD) spectroscopy revealed that the heating curves of co‐assemblies obtained at various molar ratios of T‐ala to T‐gly exhibited two distinct transition temperatures. The first transition was due to the transformation from coiled helical bundles to single helical fibers without handedness. The second was due to a change from typical elongation to nucleation. These phenomena were confirmed by solvent‐dependent decoiling of coiled helical structures and concentration‐dependent morphological analysis. The two transitioning temperatures were dependent on the concentration of T‐ala in the co‐assemblies, suggesting that T‐ala concentration plays an important role in the formation of coiled helical bundles. Our study demonstrated the first observation of two distinct transition temperatures in supramolecular polymers.  相似文献   

4.
The enantiomeric state of a supramolecular copper catalyst can be switched in situ in ca. five seconds. The dynamic property of the catalyst is provided by the non‐covalent nature of the helical assemblies supporting the copper centers. These assemblies are formed by mixing an achiral benzene‐1,3,5‐tricarboxamide (BTA) phosphine ligand (for copper coordination) and both enantiomers of a chiral phosphine‐free BTA co‐monomer (for chirality amplification). The enantioselectivity of the hydrosilylation reaction is fixed by the BTA enantiomer in excess, which can be altered by simple BTA addition. As a result of the complete and fast stereochemical switch, any combination of the enantiomers was obtained during the conversion of a mixture of two substrates.  相似文献   

5.
A highly enantioselective [2,3] Wittig rearrangement of oxindole derivatives was realized by using a chiral N,N′‐dioxide/NiII complex as the catalyst under mild reaction conditions. A strong chiral amplification effect was observed, and allowed access to chiral 3‐hydroxy 3‐substituted oxindoles bearing allenyl groups in high yields and enantioselectivities (up to 92 % ee) by using a ligand with only 15 % ee. A reasonable explanation was given based on the experimental investigations and X‐ray crystal structures of enantiomerically pure and racemic catalysts. Moreover, the first catalytic kinetic resolution of racemic oxindole derivatives by a [2,3] Wittig rearrangement was realized with high efficiency and stereoselectivity.  相似文献   

6.
Hierarchical supramolecular chiral liquid‐crystalline (LC) polymer assemblies are challenging to construct in situ in a controlled manner. Now, polymerization‐induced chiral self‐assembly (PICSA) is reported. Hierarchical supramolecular chiral azobenzene‐containing block copolymer (Azo‐BCP) assemblies were constructed with π–π stacking interactions occurring in the layered structure of Azo smectic phases. The evolution of chirality from terminal alkyl chain to Azo mesogen building blocks and further induction of supramolecular chirality in LC BCP assemblies during PICSA is achieved. Morphologies such as spheres, worms, helical fibers, lamellae, and vesicles were observed. The morphological transition had a crucial effect on the chiral expression of Azo‐BCP assemblies. The supramolecular chirality of Azo‐BCP assemblies destroyed by 365 nm UV irradiation can be recovered by heating–cooling treatment; this dynamic reversible achiral–chiral switching can be repeated at least five times.  相似文献   

7.
The amplification of supramolecular chirality has been studied in dynamic chiral hydrogen-bonded assemblies 1(3).(CA)(6) using "Sergeants and Soldiers" experiments. Previously, we have shown that chiral centers present in either the dimelamine component 1 or the cyanurate component CA quantitatively induce one handedness (M or P) in the assembly. This offers the possibility to study the amplification of chirality under two different kinetic regimes. When chiral dimelamines 1 are used, the exchange of chiral components and (M/P)-interconversion, i.e., interconversion between the (M)- and (P)-isomers of assembly 1(3).(CA)(6), take place via identical pathways (condition A). When chiral cyanurates CA are used, the exchange of chiral components occurs much faster than (M/P)-interconversion (condition B). Experimentally, a much stronger chiral amplification is observed under condition B. For example, the observed chiral amplification for a mixture of chiral and achiral components (40:60) is 46% under condition B and 32% under condition A. Kinetic models were developed to fit the experimental data and to simulate chiral amplification in dynamic systems in general. These simulations show that it is theoretically possible that the diastereomeric excess in a dynamic system is more than 99% with less than 1% chiral component present!  相似文献   

8.
Chirality can have unexpected consequences including on properties other than spectroscopic. We show herein that a racemic mixture of bis-urea stereoisomers forms thermodynamically stable supramolecular polymers that result in a more viscous solution than for the pure stereoisomer. The origin of this macroscopic property was probed by characterizing the structure and stability of the assemblies. Both racemic and non-racemic bis-urea stereoisomers form two competing helical supramolecular polymers in solution: a double and a single helical structure at low and high temperature, respectively. The transition temperature between these assemblies, as probed by spectroscopic and calorimetric analyses, is strongly influenced by the composition (by up to 70 °C). A simple model that accounts for the thermodynamics of this system, indicates that the stereochemical defects (chiral mismatches and helix reversals) affect much more the stability of single helices. Therefore, the heterochiral double helical structure predominates over the single helical structure (whilst the opposite holds for the homochiral structures), which explains the aforementioned higher viscosity of the racemic bis-urea solution. This rationale constitutes a new basis to tune the macroscopic properties of the increasing number of supramolecular polymers reported to exhibit competing chiral nanostructures.  相似文献   

9.
A 1,1′‐binaphthyl‐based bis(pyridine) ligand ( 1 ) was prepared in racemic and enantiomerically pure form to study the formation of [Pd2( 1 )4] complexes upon coordination to palladium(II) ions with regard to the degree of chiral self‐sorting. The self‐assembly process proceeds in a highly selective narcissistic self‐recognition manner to give only homochiral supramolecular M2L4 cages, which were characterized by ESI‐MS, NMR, and electronic circular dichroism (ECD) spectroscopy, as well as by single‐crystal XRD analysis.  相似文献   

10.
Reported here are unprecedented fluorescent superhelices composed of primary, supramolecular polymers of the opposite helical twist. A new class of functional dendrimers was synthesized by amino‐ene click reactions, and they demonstrate an alternating OFF/ON fluorescence with generation growth. A peripherally alkyl‐modified dendrimer displays helix‐sense‐selective supramolecular polymerization, which predominantly forms right‐handed (or left‐handed) helical supramolecular polymers in the solution containing chiral solvents. With increasing the concentration, these primary helical supramolecular polymers spontaneously twist around themselves in the opposite direction to form superhelical structures. Atomic force microscopy and circular dichroism measurements were used to directly observe the helix‐to‐superhelix transition occurring with a reversal in the helical direction. Exceptional white‐light emission was observed during superhelix formation.  相似文献   

11.
Herein we report on structural, morphological, and optical properties of homochiral and heterochiral J‐aggregates that were created by nucleation–elongation assembly of atropo‐enantiomerically pure and racemic perylene bisimides (PBIs), respectively. Our detailed studies with conformationally stable biphenoxy‐bridged chiral PBIs by UV/Vis absorption, circular dichroism (CD) spectroscopy, and atomic force microscopy (AFM) revealed structurally as well as spectroscopically quite different kinds of J‐aggregates for enantiomerically pure and racemic PBIs. AFM investigations showed that enantiopure PBIs form helical nanowires of unique diameter and large length‐to‐width ratio by self‐recognition, while racemic PBIs provide irregular‐sized particles by self‐discrimination of the enantiomers at the stage of nucleation. Steady‐state fluorescence spectroscopy studies revealed that the photoluminescence efficiency of homochiral J‐aggregated nanowires (47±3 %) is significantly higher than that of heterochiral J‐aggregated particle‐like aggregates (12±3 %), which is explained in terms of highly ordered molecular stacking in one‐dimensional nanowires of homochiral J‐aggregates. Our present results demonstrate the high impact of homochirality on the construction of well‐defined nanostructures with unique optical properties.  相似文献   

12.
The synthesis of enantiomerically pure 3‐aryl substituted indanones is developed using an enantioselective sulfoxide‐based Knoevenagel condensation/Nazarov cyclization procedure. After the reductive desulfonation of the methyl para‐tolyl sulfoxide‐containing chiral auxiliary under mild conditions, selected enantiomerically pure indanone is used for the divergent total syntheses of three resveratrol natural products (+)‐isopaucifloral F, (+)‐quadrangularin A, and (+)‐pallidol.  相似文献   

13.
This paper reports comprehensive studies on the mixed assembly of bis‐(trialkoxybenzamide)‐functionalized dialkoxynaphthalene (DAN) donors and naphthalene‐diimide (NDI) acceptors due the cooperative effects of hydrogen bonding, charge‐transfer (CT) interactions, and solvophobic effects. A series of DAN as well as NDI building blocks have been examined (wherein the relative distance between the two amide groups in a particular chromophore is the variable structural parameter) to understand the structure‐dependent variation in mode of supramolecular assembly and morphology (organogel, reverse vesicle, etc.) of the self‐assembled material. Interestingly, it was observed that when the amide functionalities are introduced to enhance the self‐assembly propensity, the mode of co‐assembly among the DAN and NDI chromophores no longer remained trivial and was dictated by a relatively stronger hydrogen‐bonding interaction instead of a weak CT interaction. Consequently, in a highly non‐polar solvent like methylcyclohexane (MCH), although kinetically controlled CT‐gelation was initially noticed, within a few hours the system sacrificed the CT‐interaction and switched over to the more stable self‐sorted gel to maximize the gain in enthalpy from the hydrogen‐bonding interaction. In contrast, in a relatively less non‐polar solvent such as tetrachloroethylene (TCE), in which the strength of hydrogen bonding is inherently weak, the contribution of the CT interaction also had to be accounted for along with hydrogen bonding leading to a stable CT‐state in the gel or solution phase. The stability and morphology of the CT complex and rate of supramolecular switching (from CT to segregated state) were found to be greatly influenced by subtle structural variation of the building blocks, solvent polarity, and the DAN/NDI ratio. For example, in a given D–A pair, by introducing just one methylene unit in the spacer segment of either of the building blocks a complete change in the mode of co‐assembly (CT state or segregated state) and the morphology (1D fiber to 2D reverse vesicle) was observed. The role of solvent polarity, structural variation, and D/A ratio on the nature of co‐assembly, morphology, and the unprecedented supramolecular‐switching phenomenon have been studied by detail spectroscopic and microscopic experiments in a gel as well as in the solution state and are well supported by DFT calculations.  相似文献   

14.
A chiral perylene diimide building block has been prepared based on an amine derivative of the amino acid L ‐phenylalanine. Detailed studies were carried out into the self‐assembly behaviour of the material in solution and the solid state using UV/Vis, circular dichroism (CD) and fluorescence spectroscopy. For the charged building block BTPPP, the molecular chirality of the side chains is translated into the chiral supramolecular structure in the form of right‐handed helical aggregates in aqueous solution. Temperature‐dependent UV/Vis studies of BTPPP in aqueous solution showed that the self‐assembly behaviour of this dye can be well described by an isodesmic model in which aggregation occurs to generate short stacks in a reversible manner. Wide‐angle X‐ray diffraction studies (WXRD) revealed that this material self‐organises into aggregates with π–π stacking distances typical for π‐conjugated materials. TEM investigations revealed the formation of self‐assembled structures of low order and with no expression of chirality evident. Differential scanning calorimetry (DSC) and polarised optical microscopy (POM) were used to investigate the mesophase properties. Optical textures representative of columnar liquid–crystalline phases were observed for solvent‐annealed samples of BTPPP. The high solubility, tunable self‐assembly and chiral ordering of these materials demonstrate their potential as new molecular building blocks for use in the construction of chiro‐optical structures and devices.  相似文献   

15.
Controlled molecular assembly is an important approach for the synthesis of single‐component materials with diverse functions. Unlike traditional heat treatment or solvent modulation, cryogenic treatment at 77 K enabled the tunable transition of a self‐assembled diphenylalanine organogel into a hexagonal crystal. Under these conditions, the assembled molecules undergo an internal rearrangement in the solid state to form a well‐defined chiral crystal structure. Moreover, these assemblies exhibit enhanced emission. This strategy for the synthesis of single‐component supramolecular assemblies can create new functions by manipulating phase transitions.  相似文献   

16.
Coordination‐driven self‐assembly is one of the most powerful strategies to prepare nanometer‐sized discrete (supra)molecular assemblies. Herein, we report on the use of two constitutionally isomeric BINOL‐based bis(pyridine) ligands for this purpose. Upon coordination to PdII ions these self‐assemble into enantiomerically pure endo‐ and exo‐functionalized hexa‐ and dodecanuclear metallosupramolecular spheres with a chiral skeleton depending on the substitution pattern of the BINOL core. These aggregates were characterized by NMR, MS, DLS, TEM, and EELS as well as ECD. Furthermore, experimental ECD data could be compared to those obtained from theoretical simulations using a simplified Tamm–Dancoff approximation to time‐dependent DFT to rationalize the extraordinary high molar circular dichroisms. Despite the rotational freedom around the central aryl–aryl bond of these ligands, the self‐assembly process happens completely selective in a “narcissistic” self‐recognition manner.  相似文献   

17.
Aqueous solutions of the achiral, monomeric, nucleobase mimics (2,4,6‐triaminopyrimidine, TAP, and a cyanuric acid derivative, CyCo6) spontaneously assemble into macroscopic homochiral domains of supramolecular polymers. These assemblies exhibit a high degree of chiral amplification. Addition of a small quantity of one handedness of a chiral derivative of CyCo6 generates exclusively homochiral structures. This system exhibits the highest reported degree of chiral amplification for dynamic helical polymers or supramolecular helices. Significantly, homochiral polymers comprised of hexameric rosettes with structural features that resemble nucleic acids are formed from mixtures of cyanuric acid (Cy) and ribonucleotides (l‐, d ‐pTARC) that arise spontaneously from the reaction of TAP with the sugars. These findings support the hypothesis that nucleic acid homochirality was a result of symmetry breaking at the supramolecular polymer level.  相似文献   

18.
Although crystallization is the most important method for the separation of enantiomers of chiral molecules in the chemical industry, the chiral recognition involved in this process is poorly understood at the molecular level. We report on the initial steps in the formation of layered racemate crystals from a racemic mixture, as observed by STM at submolecular resolution. Grown on a copper single‐crystal surface, the chiral hydrocarbon heptahelicene formed chiral racemic lattice structures within the first layer. In the second layer, enantiomerically pure domains were observed, underneath which the first layer contained exclusively the other enantiomer. Hence, the system changed from a 2D racemate into a 3D racemate with enantiomerically pure layers after exceeding monolayer‐saturation coverage. A chiral bias in form of a small enantiomeric excess suppressed the crystallization of one double‐layer enantiomorph so that the pure minor enantiomer crystallized only in the second layer.  相似文献   

19.
Amplification of chirality has been reported in polymeric systems. It has also been shown that related effects can occur in polymer‐like dynamic supramolecular aggregates, if a subtle balance between noncovalent interactions allows the coupling between a chiral information and a cooperative aggregation process. In this context, we report a strong majority‐rules effect in the formation of chiral dynamic nanotubes from chiral bisurea monomers. Furthermore, similar helical nanotubes (with the same circular dichroism signature) can be obtained from racemic monomers in a chiral solvent. Competition experiments reveal the relative strength of the helical bias induced by the chiral monomer or by the chiral solvent. The nanotube handedness is imposed by the monomer chirality, whatever the solvent chirality. However, the chirality of the solvent has a significant effect on the degree of chiral induction.  相似文献   

20.
Diarylethenes (DAEs) have rarely been used in the design of photoresponsive supramolecular assemblies with a well‐defined morphology transition owing to rather small structural changes upon photoisomerization. A supramolecular design based on the parallel conformation of DAEs enables the construction of photoresponsive dye assemblies that undergo remarkable nanomorphology transitions. The cooperative stacking of perylene bisimide (PBI) dyes was used to stabilize the parallel conformer of DAE through complementary hydrogen bonds. Atomic force microscopy, UV/Vis spectroscopy, and molecular modeling revealed that our DAE and PBI building blocks coassembled in nonpolar solvent to form well‐defined helical nanofibers featuring J‐type dimers of PBI dyes. Upon irradiating the coassembly solution with UV and visible light in turn, a reversible morphology change between nanofibers and nanoparticles was observed. This system involves the generation of a new self‐assembly pathway by means of photocontrol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号