首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Porous hybrid Cu2O/polypyrrole nanoflakes have been synthesized from solid CuO nanoplate templates through the pyrrole‐induced reductive transformation reaction at elevated temperature. The conversion mechanism involves the reductive transformation of CuO to Cu2O and the in situ oxidative polymerization of pyrrole to polypyrrole. In addition, the morphology of the as‐converted nanohybrids depends on the shape of the CuO precursors. The strategy enables us to transform single‐crystalline CuO nanosheets into hollow hybrid Cu2O/polypyrrole nanoframes. The ability to transform CuO and an organic monomer into porous hybrid materials of conducting polymer and Cu2O with macrosized morphological retention opens up interesting possibilities to create novel nanostructures. Electrochemical examinations show that these porous hybrid Cu2O/polypyrrole nanostructures exhibit efficient catalytic activity towards oxygen reduction reaction (ORR), excellent methanol tolerance ability, and catalytic stability in alkaline solution, thus making them promising nonprecious‐metal‐based catalysts for ORR in alkaline fuel cells and metal–air batteries.  相似文献   

2.
3.
A universal methodology to efficiently improve the photocatalyst performance of semiconductors was developed by employing exfoliated RuO2 two‐dimensional nanosheets as a conducting hybridization matrix. The hybridization with a RuO2 nanosheet is easily achieved by crystal growth or electrostatically derived anchoring of semiconductor nanocrystals on the RuO2 nanosheet. An enhanced chemical interaction of inorganic semiconductor with hydrophilic RuO2 nanosheet is fairly effective in optimizing their photocatalytic activity and photostability by the enhancement of charge separation and charge mobility. The RuO2‐containing nanohybrids show much better photocatalyst functionalities than do the graphene‐containing ones. The present study clearly demonstrates that hydrophilic RuO2 nanosheets are superior hybridization matrices, over the widely used hydrophobic graphene nanosheets, for exploring new efficient hybrid‐type photocatalysts.  相似文献   

4.
Small multilayer fullerenes, also known as carbon nano‐onions (CNOs; 5–6 nm in diameter, 6–8 shells), show higher reactivity than other larger carbon nanostructures. Here we report the first example of an in situ polymerization of aniline on phenyleneamine‐terminated CNO surfaces. The green, protonated, conducting emeraldine polyaniline (PANI) was directly synthesized on the surface of the CNO. The functionalized and soluble CNO/PANI composites were characterized by TEM, SEM, DSC, Raman, and infrared spectroscopy. The electrochemical properties of the conducting CNO/PANI films were also investigated. In comparison with pristine CNOs, functionalized carbon nanostructures show dramatically improved solubility in protic solvents, thus enabling their easy processing for coatings, nanocomposites, and biomedical applications.  相似文献   

5.
6.
7.
8.
Control over phase stabilities during synthesis processes is of great importance for both fundamental studies and practical applications. We describe herein a facile strategy for the synthesis of Cu2Se with phase selectivity through a simple solvothermal method. In the presence and absence of SbCl3, monoclinic α‐Cu2Se and cubic β‐Cu2Se can be synthesized, respectively. The formation of α‐Cu2Se requires optimization of the Cu/Se molar ratio in the starting reagents, the reaction temperature, as well as the timing for the addition of SbCl3. Differential scanning calorimetry of the synthesized α‐Cu2Se has shown that a part of it undergoes a phase transition to β‐Cu2Se at 135 °C, and that this phase transition is irreversible on cooling to ambient temperature. Kinetic studies have revealed that in the presence of Sb species the kinetically favored β‐Cu2Se transforms to the thermodynamically favored α‐Cu2Se. In this β‐to‐α phase transition process, the distribution of Cu ions in β‐Cu2Se, as determined by the Cu/Se ratio and temperature, is likely to play a crucial role.  相似文献   

9.
Copper nanostructures were produced as an effective and regioselective catalyst for the synthesis of 1,2,3‐triazoles from a wide range of raw materials, such as sodium azide, epoxides and terminal alkynes, in water via a one‐pot three‐component click reaction. The new heterogeneous catalyst was prepared by a simple ball mill reduction of CuO with NaBH4 using a ball‐to‐powder weight ratio of 50:1 under air atmosphere at room temperature. The catalyst was fully characterized using scanning electron microscopy, energy‐dispersive X‐ray analysis, Fourier transform infrared spectroscopy and X‐ray diffraction. The copper nanostructures catalysed both ring opening and triazole cyclization steps. Products were obtained in high yields and short reaction times. The reactions were performed at ambient temperature in water as a green solvent. The Cu/Cu2O nanostructures revealed high reusability and high stability via a simple recycling process.  相似文献   

10.
11.
Photothermal therapy has attracted much interest for use in cancer treatment in recent years. In this study, Cu2Se nanoparticles as a novel photothermal agent modified by chitosan (CS‐Cu2SeNPs) were successfully synthesized through a facile route at room temperature. The as‐synthesized CS‐Cu2SeNPs exhibited good water solubility and significant stability. CS‐Cu2SeNPs can efficiently convert near‐infrared (NIR) light into heat and exhibit excellent thermostability. In vitro experiments showed that CS‐Cu2SeNPs had selective cellular uptake between cancer and normal cells and expressed clear anticancer activity on A375 and HeLa human cancer cells. In addition, the anticancer activity was increased to about 400 % by combination with a laser at 808 nm, which acted through induction of apoptosis with the involvement of intrinsic and extrinsic pathways. CS‐Cu2SeNPs irradiated with a laser effectively triggered the intracellular reactive oxygen species (ROS) overproduction that promoted cell apoptosis. Therefore, the developed CS‐Cu2SeNPs could be used as a novel phototherapeutic agent for the photothermal therapy of human cancers.  相似文献   

12.
13.
14.
We report a facile non‐hydrothermal method for the large‐scale production of hierarchical TiO2 nanorod spheres for the photocatalytic elimination of contaminants and killing bacteria. Crescent Ti/RF spheres were prepared by deliberately adding titanium trichloride (TiCl3) to the reaction of resorcinol (R) and formaldehyde (F) in an open reactor under heating and stirring. The hierarchical TiO2 nanorod spheres were obtained by calcining the crescent Ti/RF spheres in a furnace in air to burn off the RF spheres. This method has many merits, such as large‐scale production, good crystallisation of TiO2, and good reproducibility, all of which are difficult to realise by conventional hydrothermal methods. The calcination temperature plays a significant role in influencing the morphology, crystallisation, porosity, Brunauer–Emmett–Teller (BET) specific surface area, and hierarchy of the TiO2 nanorod spheres, thus resulting in different photocatalytic performances under UV light and solar light irradiation. The experimental results have demonstrated that the hierarchical TiO2 nanorod spheres obtained after calcination of the crescent Ti/RF spheres at different temperatures displayed similar photocatalytic activities under irradiation with UV light. We attribute this to a balance of opposing effects of the investigated factors. A higher calcination temperature leads to greater light absorption capability of the TiO2 nanorod spheres, thus resulting in higher photocatalytic antibacterial activity under solar light irradiation. It is also interesting to note that the hierarchical TiO2 nanorod spheres displayed intrinsic antibacterial activity in the absence of light irradiation, apparently because their sharp outward spikes can easily pierce and penetrate the walls of bacteria. In this study, the sharpest hierarchical TiO2 nanorod spheres were obtained after calcination at 500 °C, and these exhibited the highest antibacterial activity without light irradiation. A higher calcination temperature proved detrimental to the sharpness of the TiO2 nanorods, thus reducing their intrinsic antibacterial activity.  相似文献   

15.
Supramolecular polymer nanowires have been prepared by using DNA‐templating of 2,5‐(bis‐2‐thienyl)‐pyrrole (TPT) by oxidation with FeCl3 in a mixed aqueous/organic solvent system. Despite the reduced capacity for strong hydrogen bonding in polyTPT compared to other systems, such as polypyrrole, the templating proceeds well. FTIR spectroscopic studies confirm that the resulting material is not a simple mixture and that the two types of polymer interact. This is indicated by shifts in bands associated with both the phosphodiester backbone and the nucleobases. XPS studies further confirm the presence of DNA and TPT, as well as dopant Cl? ions. Molecular dynamics simulations on a [{dA24:dT24}/{TPT}4] model support these findings and indicate a non‐coplanar conformation for oligoTPT over much of the trajectory. AFM studies show that the resulting nanowires typically lie in the 7–8 nm diameter range and exhibit a smooth, continuous, morphology. Studies on the electrical properties of the prepared nanowires by using a combination of scanned conductance microscopy, conductive AFM and variable temperature two‐terminal I–V measurements show, that in contrast to similar DNA/polymer systems, the conductivity is markedly reduced compared to bulk material. The temperature dependence of the conductivity shows a simple Arrhenius behaviour consistent with the hopping models developed for redox polymers.  相似文献   

16.
Two dimensional (2D) nanoribbons constitute an emerging nanoarchitecture for advanced microelectronics and energy conversion due to the stronger size confinement effects compared to traditional nanosheets. Triclinic crystalline red phosphorus (cRP) composed by a layered structure is a promising 2D phosphorus allotrope and the tube‐like substructure is beneficial to the construction of nanoribbons. In this work, few‐layer cRP nanoribbons are synthesized and the effectiveness in the electrochemical nitrogen reduction reaction (NRR) is investigated. An iodine‐assisted chemical vapor transport (CVT) method is developed to synthesize circa 10 g of bulk cRP lumps with a yield of over 99 %. With the aid of probe ultrasonic treatment, high‐quality cRP microcrystals are exfoliated into few‐layer nanoribbons (cRP NRs) with large aspect ratios. As non‐metallic materials, cRP NRs are suitable for the electrochemical nitrogen reduction reaction. The ammonia yield is 15.4 μg h?1 mgcat.?1 at ?0.4 V vs. reversible hydrogen electrode in a neutral electrolyte under ambient conditions and the Faradaic efficiency is 9.4 % at ?0.2 V. Not only is cRP a promising catalyst, but also the novel strategy expands the application of phosphorus‐based 2D structures beyond that of traditional nanosheets.  相似文献   

17.
The investigation of solution‐borne nanostructures by transmission electron microscopy (TEM) is a frequently used analytical method in materials chemistry. In many cases, the preparation of the TEM sample involves drying and staining steps, and the collection of images leads to the interaction of the specimen with the electron beam. Both aspects call for cautious interpretation of the resulting electron micrographs. Alternatively, a near‐native solvated state can be preserved by cryogenic vitrification and subsequent imaging by low‐dose cryogenic TEM. In this Minireview, we provide a critical analysis of sample preparation, and more importantly, of the acquisition and interpretation of electron micrographs. This overview should provide a framework for the application of (cryo)‐TEM as a powerful and reliable tool for the analysis of colloidal and self‐assembled structures with nanoscopic dimensions.  相似文献   

18.
19.
Uniform Cu2S nanodisks have been synthesized from a well‐characterized layered copper thiolate precursor by structure‐controlling solventless thermolysis at 200–220 °C under a N2 atmosphere. The development from small Cu2S nanoparticles (diameter ≈3 nm) to nanodisks (diameter 8.3 nm) and then to faceted nanodisks (diameter 27.5 nm, thickness 12.7 nm) is accompanied by a continuous phase transition from metastable orthorhombic to monoclinic Cu2S, the ripening of small particles by aggregation, and finally the crystallization process. The growth of the nanoproduct is constrained by the crystal structure of the precursor and the in situ‐generated thiol molecules. Such controlled anisotropic growth leads to a nearly constant thickness of faceted nanodisks with different diameters, which has been confirmed by TEM observations and optical absorption measurements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号