首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structures of triethyl­ammonium adenosine cyclic 2′,3′‐phosphate {systematic name: triethyl­ammonium 4‐(6‐amino­purin‐9‐yl)‐6‐hydroxy­methyl‐2‐oxido‐2‐oxoperhydro­furano[3,4‐c][1,3,2]dioxaphosphole}, Et3NH(2′,3′‐cAMP) or C6H16N+·C10H11N5O6P, (I), and guanosine cyclic 2′,3′‐phosphate monohydrate {systematic name: triethyl­ammonium 6‐hydroxy­methyl‐2‐oxido‐2‐oxo‐4‐(6‐oxo‐1,6‐dihydro­purin‐9‐yl)perhydro­furano[3,4‐c][1,3,2]dioxaphosphole monohydrate}, [Et3NH(2′,3′‐cGMP)]·H2O or C6H16N+·C10H11N5O7P·H2O, (II), reveal different nucleobase orientations, viz. anti in (I) and syn in (II). These are stabilized by different inter‐ and intra­molecular hydrogen bonds. The structures also exhibit different ribose ring puckering [4E in (I) and 3T2 in (II)] and slightly different 1,3,2‐dioxaphospho­lane ring conformations, viz. envelope in (I) and puckered in (II). Infinite ribbons of 2′,3′‐cAMP and helical chains of 2′,3′‐cGMP ions, both formed by O—H⋯O, N—H⋯X and C—H⋯X (X = O or N) hydrogen‐bond contacts, characterize (I) and (II), respectively.  相似文献   

2.
Two spiro[indoline‐3,3′‐pyrrolizine] derivatives have been synthesized in good yield with high regio‐ and stereospecificity using one‐pot reactions between readily available starting materials, namely l ‐proline, substituted 1H‐indole‐2,3‐diones and electron‐deficient alkenes. The products have been fully characterized by elemental analysis, IR and NMR spectroscopy, mass spectrometry and crystal structure analysis. In (1′RS ,2′RS ,3SR ,7a′SR )‐2′‐benzoyl‐1‐hexyl‐2‐oxo‐1′,2′,5′,6′,7′,7a′‐hexahydrospiro[indoline‐3,3′‐pyrrolizine]‐1′‐carboxylic acid, C28H32N2O4, (I), the unsubstituted pyrrole ring and the reduced spiro‐fused pyrrole ring adopt half‐chair and envelope conformations, respectively, while in (1′RS ,2′RS ,3SR ,7a′SR )‐1′,2′‐bis(4‐chlorobenzoyl)‐5,7‐dichloro‐2‐oxo‐1′,2′,5′,6′,7′,7a′‐hexahydrospiro[indoline‐3,3′‐pyrrolizine], which crystallizes as a partial dichloromethane solvate, C28H20Cl4N2O3·0.981CH2Cl2, (II), where the solvent component is disordered over three sets of atomic sites, these two rings adopt envelope and half‐chair conformations, respectively. Molecules of (I) are linked by an O—H…·O hydrogen bond to form cyclic R 66(48) hexamers of (S 6) symmetry, which are further linked by two C—H…O hydrogen bonds to form a three‐dimensional framework structure. In compound (II), inversion‐related pairs of N—H…O hydrogen bonds link the spiro[indoline‐3,3′‐pyrrolizine] molecules into simple R 22(8) dimers.  相似文献   

3.
The synthesis and characterization of three new dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine] compounds are reported, together with the crystal structures of two of them. (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐Chlorophenyl)‐1‐hexyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C28H30ClN3O2S2, (I), (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐1‐benzyl‐5‐methyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C30H26ClN3O2S2, (II), and (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐5‐fluoro‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C22H17ClFN3O2S2, (III), were each isolated as a single regioisomer using a one‐pot reaction involving l ‐proline, a substituted isatin and (Z)‐5‐(4‐chlorobenzylidene)‐2‐sulfanylidenethiazolidin‐4‐one [5‐(4‐chlorobenzylidene)rhodanine]. The compositions of (I)–(III) were established by elemental analysis, complemented by high‐resolution mass spectrometry in the case of (I); their constitutions, including the definition of the regiochemistry, were established using NMR spectroscopy, and the relative configurations at the four stereogenic centres were established using single‐crystal X‐ray structure analysis. A possible reaction mechanism for the formation of (I)–(III) is proposed, based on the detailed stereochemistry. The molecules of (I) are linked into simple chains by a single N—H…N hydrogen bond, those of (II) are linked into a chain of rings by a combination of N—H…O and C—H…S=C hydrogen bonds, and those of (III) are linked into sheets by a combination of N—H…N and N—H…S=C hydrogen bonds.  相似文献   

4.
In the crystal structures of four thiophene derivatives, (E)‐3′‐[2‐(anthracen‐9‐yl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C28H18S3, (E)‐3′‐[2‐(1‐pyrenyl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C30H18S3, (E)‐3′‐[2‐(3,4‐dimethoxyphenyl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C22H18O2S3, and (E,E)‐1,4‐bis[2‐(2,2′:5′,2′′‐terthiophen‐3′‐yl)ethenyl]‐2,5‐dimethoxybenzene, C36H26O2S6, at least one of the terminal thiophene rings is disordered and the disorder is of the flip type. The terthiophene fragments are far from being coplanar, contrary to terthiophene itself. The central C—C=C—C fragments are almost planar but the bond lengths suggest slight delocalization within this fragment. The crystal packing is determined by van der Waals interactions and some weak, relatively short, C—H...S and C—H...π directional contacts.  相似文献   

5.
The first results of a study aiming at an efficient preparation of a large variety of 2′‐O‐[(triisopropylsilyl)oxy]methyl(= tom)‐protected ribonucleoside phosphoramidite building blocks containing modified nucleobases are reported. All of the here presented nucleosides have already been incorporated into RNA sequences by several other groups, employing 2′‐O‐tbdms‐ or 2′‐O‐tom‐protected phosphoramidite building blocks (tbdms = (tert‐butyl)dimethylsilyl). We now optimized existing reactions, developed some new and shorter synthetic strategies, and sometimes introduced other nucleobase‐protecting groups. The 2′‐O‐tom, 5′‐O‐(dimethoxytrityl)‐protected ribonucleosides N2‐acetylisocytidine 5 , O2‐(diphenylcarbamoyl)‐N6‐isobutyrylisoguanosine 8 , N6‐isobutyryl‐N2‐(methoxyacetyl)purine‐2,6‐diamine ribonucleoside (= N8‐isobutyryl‐2‐[(methoxyacetyl)amino]adenosine) 11 , 5‐methyluridine 13 , and 5,6‐dihydrouridine 15 were prepared by first introducing the nucleobase protecting groups and the dimethoxytrityl group, respectively, followed by the 2′‐O‐tom group (Scheme 1). The other presented 2′‐O‐tom, 5′‐O‐(dimethoxytrityl)‐protected ribonucleosides inosine 17 , 1‐methylinosine 18 , N6‐isopent‐2‐enyladenosine 21 , N6‐methyladenosine 22 , N6,N6‐dimethyladenosine 23 , 1‐methylguanosine 25 , N2‐methylguanosine 27 , N2,N2‐dimethylguanosine 29 , N6‐(chloroacetyl)‐1‐methyladenosine 32 , N6‐{{{(1S,2R)‐2‐{[(tert‐butyl)dimethylsilyl]oxy}‐1‐{[2‐(4‐nitrophenyl)ethoxy]carbonyl}propyl}amino}carbonyl}}adenosine 34 (derived from L ‐threonine) and N4‐acetyl‐5‐methylcytidine 36 were prepared by nucleobase transformation reactions from standard, already 2′‐O‐tom‐protected ribonucleosides (Schemes 2–4). Finally, all these nucleosides were transformed into the corresponding phosphoramidites 37 – 52 (Scheme 5), which are fully compatible with the assembly and deprotection conditions for standard RNA synthesis based on 2′‐O‐tom‐protected monomeric building blocks.  相似文献   

6.
The title compound, methyl (2aS,3R,5R,5aS,6S,6aS,8R,9aS,10aR,10bR,10cS)‐8‐(3‐furyl)‐2a,4,5,5a,6,6a,8,9,9a,10a,10b,10c‐dodeca­hydro‐3‐hydroxy‐2a,5a,6a,7‐tetra­methyl‐5‐(3‐methylbut‐2‐enoyl­oxy)‐2H,3H‐cyclo­penta­[4′,5′]­furo­[2′,3′:6,5]benzo[cd]­isobenzo­furan‐6‐acetate, C32H42O8, was isolated from uncrushed green leaves of Azadirachta indica A. Juss (neem) and has been found to possess antifeedant activity against Spodptera litura. The conformations of the functional groups are similar to those of 3‐des­acetyl­salannin, which was isolated from neem kernels. The mol­ecules are linked into chains by intermolecular O—H?O hydrogen bonds.  相似文献   

7.
The Zn complexes bis(acetylacetonato‐κ2O,O′)bis{4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κN1}zinc(II), [Zn(C5H7O2)2(C22H17N3S)2], (I), and {μ‐4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κ2N1:N1′′}bis[bis(acetylacetonato‐κ2O,O′)zinc(II)], [Zn2(C5H7O2)4(C22H17N3S)], (II), are discrete entities with different nuclearities. Compound (I) consists of two centrosymmetrically related monodentate 4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine (L1) ligands binding to one ZnII atom sitting on an inversion centre and two centrosymmetrically related chelating acetylacetonate (acac) groups which bind via carbonyl O‐atom donors, giving an N2O4 octahedral environment for ZnII. Compound (II), however, consists of a bis‐monodentate L1 ligand bridging two ZnII atoms from two different Zn(acac)2 fragments. Intra‐ and intermolecular interactions are weak, mainly of the C—H...π and π–π types, mediating similar layered structures. In contrast to related structures in the literature, sulfur‐mediated nonbonding interactions in (II) do not seem to have any significant influence on the supramolecular structure.  相似文献   

8.
Two compounds containing 1,3‐benzodioxin groups are reported, namely (±)‐6‐tert‐butyl‐8‐hydroxy­methyl‐2‐phenyl‐4H‐1,3‐benzodioxin, C19H22O3, (I), and 2,2,2′,2′,6,6′‐hexamethyl‐8,8′‐methyl­enebis(4H‐1,3‐benzodioxin), C23H28O4, (II).The hydroxy groups of neighbouring mol­ecules in (I) are hydrogen bonded to each other, giving rise to double‐row chains. The mol­ecule in (II) adopts a `butterfly' conformation, with the O atoms in distal positions. In both compounds, the dioxin rings are in distorted half‐chair conformations.  相似文献   

9.
3‐tert‐Butyl‐7‐(4‐methoxybenzyl)‐4′,4′‐dimethyl‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C31H37N3O3, (I), 3‐tert‐butyl‐7‐(2,3‐dimethoxybenzyl)‐4′,4′‐dimethyl‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C32H39N3O4, (II), 3‐tert‐butyl‐4′,4′‐dimethyl‐7‐(3,4‐methylenedioxybenzyl)‐1‐phenyl‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione, C31H35N3O4, (III), and 3‐tert‐butyl‐4′,4′‐dimethyl‐1‐phenyl‐7‐(3,4,5‐trimethoxybenzyl)‐4,5,6,7‐tetrahydro‐1H‐pyrazolo[3,4‐b]pyridine‐5‐spiro‐1′‐cyclohexane‐2′,6′‐dione ethanol 0.67‐solvate, C33H41N3O5·0.67C2H6O, (IV), all contain reduced pyridine rings having half‐chair conformations. The molecules of (I) and (II) are linked into centrosymmetric dimers and simple chains, respectively, by C—H...O hydrogen bonds, augmented only in (I) by a C—H...π hydrogen bond. The molecules of (III) are linked by a combination of C—H...O and C—H...π hydrogen bonds into a chain of edge‐fused centrosymmetric rings, further linked by weak hydrogen bonds into supramolecular arrays in two or three dimensions. The heterocyclic molecules in (IV) are linked by two independent C—H...O hydrogen bonds into sheets, from which the partial‐occupancy ethanol molecules are pendent. The significance of this study lies in its finding of a very wide range of supramolecular aggregation modes dependent on rather modest changes in the peripheral substituents remote from the main hydrogen‐bond acceptor sites.  相似文献   

10.
Two new one‐dimensional CuII coordination polymers (CPs) containing the C2h‐symmetric terphenyl‐based dicarboxylate linker 1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylate (3,3′‐TPDC), namely catena‐poly[[bis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ4O,O′:O′′:O′′′] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena‐poly[[aquabis(dimethylamine‐κN)copper(II)]‐μ‐1,1′:4′,1′′‐terphenyl‐3,3′‐dicarboxylato‐κ2O3:O3′] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X‐ray crystallography. The 3,3′‐TPDC bridging ligands coordinate the CuII ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one‐dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one‐dimensional coordination polymer chains, forming a two‐dimensional network in (I) and a three‐dimensional network in (II).  相似文献   

11.
A novel anhydrogalactosucrose derivative 2′‐methoxyl‐O‐1′,4′:3′,6′‐dianhydro‐βD‐fructofuranosyl 3,6‐anhydro‐4‐chloro‐4‐deoxy‐αD‐galactopyranoside ( 4 ) was prepared from 3,6:1′,4′:3′,6′‐trianhydro‐4‐chloro‐4‐deoxy‐galactosucrose ( 3 ) via a facile method and characterized by 1H NMR, 13C NMR and 2D NMR spectra. The single crystal X‐ray diffraction analysis shows that the title molecule forms a two thee‐dimensional network structure by two kinds of hydrogen bond interactions [O(2) H(2)···O(7), O(5) H(5)···O(8)]. Its stability was investigated by acid hydrolysis reaction treated with sulfuric acid, together with the formation of 1,6‐Di‐O‐methoxy‐4‐chloro‐4‐deoxy‐βD‐galactopyranose ( 5 ) and 2,2‐Di‐C‐methoxy‐1,4:3,6‐dianhydromannitol ( 6 ). According to the result, the relative stability of the ether bonds in the structure is in the order: C(1) O C(5)≈C(3′) O C(6′)≈C(1′) O C(4′)>C(3) O C(6)≈C(1) O C(2′)>C(2′) O C(5′).  相似文献   

12.
The synthesis of four novel 3′‐C‐branched and 4′‐C‐branched nucleosides and their transformation into the corresponding 3′‐O‐phosphoramidite building blocks for automated oligonucleotide synthesis is reported. The 4′‐C‐branched key intermediate 11 was synthesized by a convergent strategy and converted to its 2′‐O‐methyl and 2′‐deoxy‐2′‐fluoro derivatives, leading to the preparation of novel oligonucleotide analogues containing 4′‐C‐(aminomethyl)‐2′‐O‐methyl monomer X and 4′‐C‐(aminomethyl)‐2′‐deoxy‐2′‐fluoro monomer Y (Schemes 2 and 3). In general, increased binding affinity towards complementary single‐stranded DNA and RNA was obtained with these analogues compared to the unmodified references (Table 1). The presence of monomer X or monomer Y in a 2′‐O‐methyl‐RNA oligonucleotide had a negative effect on the binding affinity of the 2′‐O‐methyl‐RNA oligonucleotide towards DNA and RNA. Starting from the 3′‐C‐allyl derivative 28 , 3′‐C‐(3‐aminopropyl)‐protected nucleosides and 3′‐O‐phosphoramidite derivatives were synthesized, leading to novel oligonucleotide analogues containing 3′‐C‐(3‐aminopropyl)thymidine monomer Z or the corresponding 3′‐C‐(3‐aminopropyl)‐2′‐O,5‐dimethyluridine monomer W (Schemes 4 and 5). Incorporation of the 2′‐deoxy monomer Z induced no significant changes in the binding affinity towards DNA but decreased binding affinity towards RNA, while the 2′‐O‐methyl monomer Z induced decreased binding affinity towards DNA as well as RNA complements (Table 2).  相似文献   

13.
2,2′‐Anhydro‐1‐(3′,5′‐di‐O‐acetyl‐β‐D‐arabinofuranosyl)uracil, C13H14N2O7, was obtained by refluxing 2′,3′‐O‐(methoxymethylene)uridine in acetic anhydride. The structure exhibits a nearly perfect C4′‐endo (4E) conformation. The best four‐atom plane of the five‐membered furanose ring is O—C—C—C, involving the C atoms of the fused five‐membered oxazolidine ring, and the torsion angle is only −0.4 (2)°. The oxazolidine ring is essentially coplanar with the six‐membered uracil ring [r.m.s. deviation = 0.012 (5) Å and dihedral angle = −3.2 (3)°]. The conformation at the exocyclic C—C bond is gauche–trans which is stabilized by various C—H...π and C—O...π interactions.  相似文献   

14.
Addition of various amines to the 3,3‐bis(trifluoromethyl)acrylamides 10a and 10b gave the tripeptides 11a – 11f , mostly as mixtures of epimers (Scheme 3). The crystalline tripeptide 11f 2 was found to be the N‐terminal (2‐hydroxyethoxy)‐substituted (R,S,S)‐ester HOCH2CH2O‐D ‐Val(F6)‐MeLeu‐Ala‐OtBu by X‐ray crystallography. The C‐terminal‐protected tripeptide 11f 2 was condensed with the N‐terminus octapeptide 2b to the depsipeptide 12a which was thermally rearranged to the undecapeptide 13a (Scheme 4). The condensation of the epimeric tripeptide 11f 1 with the octapeptide 2b gave the undecapeptide 13b directly. The undecapeptides 13a and 13b were fully deprotected and cyclized to the [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐D ‐valine]]‐ and [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐L ‐valine]]cyclosporins 14a and 14b , respectively (Scheme 5). Rate differences observed for the thermal rearrangements of 12a to 13a and of 12b to 13b are discussed.  相似文献   

15.
π‐Conjugated organic materials exhibit high and tunable nonlinear optical (NLO) properties, and fast response times. 4′‐Phenyl‐2,2′:6′,2′′‐terpyridine (PTP) is an important N‐heterocyclic ligand involving π‐conjugated systems, however, studies concerning the third‐order NLO properties of terpyridine transition metal complexes are limited. The title binuclear terpyridine CoII complex, bis(μ‐4,4′‐oxydibenzoato)‐κ3O,O′:O′′;κ3O′′:O,O′‐bis[(4′‐phenyl‐2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)cobalt(II)], [Co2(C14H8O5)2(C21H15N3)2], (1), has been synthesized under hydrothermal conditions. In the crystal structure, each CoII cation is surrounded by three N atoms of a PTP ligand and three O atoms, two from a bidentate and one from a symmetry‐related monodentate 4,4′‐oxydibenzoate (ODA2−) ligand, completing a distorted octahedral coordination geometry. Neighbouring [Co(PTP)]2+ units are bridged by ODA2− ligands to form a ring‐like structure. The third‐order nonlinear optical (NLO) properties of (1) and PTP were determined in thin films using the Z‐scan technique. The title compound shows a strong third‐order NLO saturable absorption (SA), while PTP exhibits a third‐order NLO reverse saturable absorption (RSA). The absorptive coefficient β of (1) is −37.3 × 10−7 m W−1, which is larger than that (8.96 × 10−7 m W−1) of PTP. The third‐order NLO susceptibility χ(3) values are calculated as 6.01 × 10−8 e.s.u. for (1) and 1.44 × 10−8 e.s.u. for PTP.  相似文献   

16.
A new coordination polymer, catena‐poly[[(dipyrido[3,2‐a:2′,3′‐c]phenazine‐κ2N,N′)nickel(II)]‐μ‐2,6‐dipicolinato‐κ4O2,N,O6:O2′], [Ni(C7H3NO4)(C18H10N4)]n, exhibits a one‐dimensional structure in which 2,6‐dipicolinate acts as a bridging ligand interconnecting adjacent nickel(II) centers to form a chain structure. The asymmetric unit contains one NiII center, one dipyrido[3,2‐a:2′,3′‐c]phenazine ligand and one 2,6‐dipicolinate ligand. Each NiII center is six‐coordinated and surrounded by three N atoms and three O atoms from one dipyrido[3,2‐a:2′,3′‐c]phenazine ligand and two different 2,6‐dipicolinate ligands, leading to a distorted octahedral geometry. Adjacent chains are linked by π–π stacking interactions and weak interactions to form a three‐dimensional supramolecular network.  相似文献   

17.
The aldehyde moiety in the title complex, chloro(2‐pyridinecarboxaldehyde‐N,O)(2,2′:6′,2′′‐terpyridine‐κ3N)ruthenium(II)–chloro­(2‐pyridine­carboxyl­ic acid‐N,O)(2,2′:6′,2′′‐ter­pyridine‐κ3N)­ruthenium(II)–perchlorate–chloro­form–water (1.8/0.2/2/1/1), [RuCl­(C6H5NO)­(C15H11N3)]1.8[RuCl­(C6H5­NO2)(C15H11N3)]0.2­(ClO4)2·­CHCl3·­H2O, is a structural model of substrate coordination to a transfer hydrogenation catalyst. The title complex features two independent RuII complex cations that display very similar distorted octahedral coordination provided by the three N atoms of the 2,2′:6′,2′′‐ter­pyridine ligand, the N and O atoms of the 2‐pyridine­carbox­aldehyde (pyCHO) ligand and a chloride ligand. One of the cation sites is disordered such that the aldehyde group is replaced by a 20 (1)% contribution from a carboxyl­ic acid group (aldehyde H replaced by carboxyl O—H). Notable dimensions in the non‐disordered complex cation are Ru—N 2.034 (2) Å and Ru—O 2.079 (2) Å to the pyCHO ligand and O—C 1.239 (4) Å for the pyCHO carbonyl group.  相似文献   

18.
Convergent syntheses of the 9‐(3‐X‐2,3‐dideoxy‐2‐fluoro‐β‐D ‐ribofuranosyl)adenines 5 (X=N3) and 7 (X=NH2), as well as of their respective α‐anomers 6 and 8 , are described, using methyl 2‐azido‐5‐O‐benzoyl‐2,3‐dideoxy‐2‐fluoro‐β‐D ‐ribofuranoside ( 4 ) as glycosylating agent. Methyl 5‐O‐benzoyl‐2,3‐dideoxy‐2,3‐difluoro‐β‐D ‐ribofuranoside ( 12 ) was prepared starting from two precursors, and coupled with silylated N6‐benzoyladenine to afford, after deprotection, 2′,3′‐dideoxy‐2′,3′‐difluoroadenosine ( 13 ). Condensation of 1‐O‐acetyl‐3,5‐di‐O‐benzoyl‐2‐deoxy‐2‐fluoro‐β‐D ‐ribofuranose ( 14 ) with silylated N2‐palmitoylguanine gave, after chromatographic separation and deacylation, the N7β‐anomer 17 as the main product, along with 2′‐deoxy‐2′‐fluoroguanosine ( 15 ) and its N9α‐anomer 16 in a ratio of ca. 42 : 24 : 10. An in‐depth conformational analysis of a number of 2,3‐dideoxy‐2‐fluoro‐3‐X‐D ‐ribofuranosides (X=F, N3, NH2, H) as well as of purine and pyrimidine 2‐deoxy‐2‐fluoro‐D ‐ribofuranosyl nucleosides was performed using the PSEUROT (version 6.3) software in combination with NMR studies.  相似文献   

19.
The structures of new oxaindane spiropyrans derived from 7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐carbaldehyde (SP1), namely N‐benzyl‐2‐[(7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐yl)methylidene]hydrazinecarbothioamide, C27H25N3O3S, (I), at 120 (2) K, and N′‐[(7‐hydroxy‐3′,3′‐dimethyl‐3′H‐spiro[chromene‐2,1′‐isobenzofuran]‐8‐yl)methylidene]‐4‐methylbenzohydrazide acetone monosolvate, C27H24N2O4·C3H6O, (II), at 100 (2) K, are reported. The photochromically active Cspiro—O bond length in (I) is close to that in the parent compound (SP1), and in (II) it is shorter. In (I), centrosymmetric pairs of molecules are bound by two equivalent N—H...S hydrogen bonds, forming an eight‐membered ring with two donors and two acceptors.  相似文献   

20.
The crystal structure of the title compound, (2,2′‐bipyridyl‐κ2N,N′)(tetra­allyl 3,3,3′,3′‐tetra­methyl‐1,1′‐bi­cyclo­propane‐1,1′,2,2′‐tetra­carboxyl­ato‐κ2C2,C2′)­palladium(II), [Pd(C26H32­O8)(C10­H8­N2)], is disordered above 194 K. A doubling of the unit cell is observed on cooling. The structure at 143 K contains two ordered mol­ecules related by a pseudo‐translation vector of approximately (0.44,0.00,0.50) or a pseudo‐inversion center at approximately (0.22,0.00,0.25). Weak intermolecular C—H?O interactions are enhanced in the low‐temperature structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号