首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of enantiomeric 2,6‐bis(1,2,3‐triazol‐4‐yl)pyridines (btp)‐containing ligands was synthesized by a one‐pot two‐step copper‐catalyzed amine/alkyne click reaction. The EuIII‐ and TbIII‐directed self‐assembly formation of these ligands was studied in CH3CN by monitoring their various photophysical properties, including their emerging circular dichroism and circularly polarized luminescence. The global analysis of the former enabled the determination of both the stoichiometry and the stability constants of the various chiral supramolecular species in solution.  相似文献   

2.
Orthometalation at IrIII centers is usually facile, and such orthometalated complexes often display intriguing electronic and catalytic properties. By using a central phenyl ring as C?H activation sites, we present here mono‐ and dinuclear IrIII complexes with “click”‐derived 1,2,3‐triazole and 1,2,3‐triazol‐5‐ylidene ligands, in which the wingtip phenyl groups in the aforementioned ligands are additionally orthometalated and bind as carbanionic donors to the IrIII centers. Structural characterization of the complexes reveal a piano stool‐type of coordination around the metal centers with the “click”‐derived ligands bound either with C^N or C^C donor sets to the IrIII centers. Furthermore, whereas bond localization is observed within the 1,2,3‐triazole ligands, a more delocalized situation is found in their 1,2,3‐triazol‐5‐ylidene counterparts. All complexes were subjected to catalytic tests for the transfer hydrogenation of benzaldehyde and acetophenone. The dinuclear complexes turned out to be more active than their mononuclear counterparts. We present here the first examples of stable, isomer‐pure, dinuclear cyclometalated IrIII complexes with poly‐mesoionic‐carbene ligands.  相似文献   

3.
Two large rings, 66‐ (m‐66 ) and 78‐membered ( m‐78 ) rings, each one incorporating two pairs of transition‐metal‐complexing units, have been prepared. The coordinating fragments are alternating bi‐ and tridentate chelating groups, namely, 2,9‐diphenyl‐1,10‐phenanthroline (dpp) and 2,2′,2′,6′′‐terpyridine (terpy) respectively. Both macrocycles form molecular figures‐of‐eight in the presence of FeII, affording a classical bis‐terpy complex as the central core. The larger m‐78 ring can accommodate a four‐coordinate CuI center with the formation of a {Cu(dpp)2}+ central complex and a highly twisted figure‐of‐eight backbone, whereas m‐66 is too small to coordinate CuI. Macrocycle m‐78 thus affords stable complexes with both FeII and CuI; the ligand around the metal changes from (terpy)2 to (dpp)2. This bimodal coordination situation allows for a large amplitude rearrangement of the organic backbone. When coordinated to preferentially octahedrally coordinated FeII or CuII, the height of the molecule along the coordinating axis of the tridentate terpy ligands is only about 11 Å, whereas the height of the molecule along the same vertical axis is several times as large for the tetrahedral CuI complex. Chemically or electrochemically driven contraction and extension motions along a defined axis make this figure‐of‐eight particularly promising as a new class of molecular machine prototype for use as a constitutive element in muscle‐like dynamic systems.  相似文献   

4.
The synthesis of a variety of 2‐(1H‐1,2,3‐triazol‐4‐yl)‐pyridines by click chemistry is demonstrated to provide straightforward access to mono‐functionalized ligands. The ring‐opening polymerization of ε‐caprolactone initiated by such a mono‐functionalized ligand highlights the synthetic potential of this class of bidentate ligands with respect to polymer chemistry or the attachment onto surfaces and nanoparticles. The coordination to RuII ions results in homoleptic and heteroleptic complexes with the resultant photophysical and electrochemical properties strongly dependent on the number of these ligands attached to the RuII core.  相似文献   

5.
Self‐assembled, hexarhenium(I), triangular metalloprism compound [{(CO)3Re(μ‐ 2 )Re(CO)3}33‐ 1 )2] ( 3 ) featuring three bis‐chelating pillarlike indigo dianions (μ‐ 2 ), each of which connects two fac‐Re(CO)3 cores, which are interconnected by a tritopic N donor, that is, a 2,4,6‐tris(4‐pyridyl)‐1,3,5‐triazine (μ3‐ 1 , tPyTz) ligand, has been synthesized in high yield and characterized. Metalloprism 3 exhibits a strong absorption in the near‐infrared (NIR) region. The reversible, multielectron redox properties of the electrogenerated 3 n species, where n=3+, 0, 3?, 4?, 5?, 8?, in the visible and especially in the NIR region were investigated in THF solution by cyclic voltammetry (CV), chronocoulometry, EPR spectroscopy, and thin‐layer UV/Vis/NIR spectroelectrochemistry (SEC). Stepwise, site‐specific electrochemical reductions lead to the formation of a series of highly stable ion (radical) species in which electrons associated with μ‐ 2 or μ3‐ 1 components of the molecule can be clearly distinguished. An EPR investigation revealed interaction of unpaired electrons with the metal nuclei (185,187Re, I=5/2) in the reduced intermediates. The framework has C2 symmetry, and accidental degeneracies suffice. Detailed theoretical calculations by structure‐based DFT confirm that the triply degenerate HOMO has ≥70 % indigo character with a sizable dπ‐Re character, while the LUMO is dominated by the triply degenerate indigo ligands, and the LUMO+1 by doubly degenerate tPyTz ligands. A comparison of 3 and previously reported 2,2′‐bis‐benzimidazolate‐ (BiBzlm) or alkoxy‐pillared ReI metalloprisms indicates a very low switching potential with a potential window of less than 1 V and reversibly accessible optical properties with higher stability of the intermediates. The properties exhibited by 3 appear to be due to the slight tuning of the bridging ligand from N,N? to N,O?.  相似文献   

6.
Owing to their broad spectrum of biological activities and low toxicity, β‐lactams are attractive lead structures for the design of novel molecular probes. However, the synthesis of positron emission tomography (PET)‐isotope‐labelled β‐lactams has not yet been reported. Herein, we describe the simple preparation of radiofluorinated β‐lactams by using the fast Kinugasa reaction between 18F‐labelled nitrone [18F]‐ 1 and alkynes of different reactivity. Additionally, 18F‐labelled fused β‐lactams were obtained through the reaction of a cyclic nitrone 7 with radiofluorinated alkynes [18F]‐ 6 a , b . Radiochemical yields of the Kinugasa reaction products could be significantly increased by the use of different CuI ligands, which additionally allowed a reduction in the amount of precursor and/or reaction time. Model radiofluorinated β‐lactam‐peptide and protein conjugates ([18F]‐ 10 and 18F‐labelled BSA conjugate) were efficiently obtained in high yield under mild conditions (aq. MeCN, ambient temperature) within a short reaction time, demonstrating the suitability of the developed method for radiolabelling of sensitive molecules such as biopolymers.  相似文献   

7.
We report the design and synthesis of small molecules that exhibit enhanced luminescence in the presence of duplex rather than single‐stranded DNA. The local environment presented by a well‐known [Ru(dipyrido[3,2‐a:2′,3′‐c]phenazine)L2]2+‐based DNA intercalator was modified by functionalizing the bipyridine ligands with esters and carboxylic acids. By systematically varying the number and charge of the pendant groups, it was determined that decreasing the electrostatic interaction between the intercalator and the anionic DNA backbone reduced single‐strand interactions and translated to better duplex specificity. In studying this class of complexes, a single RuII complex emerged that selectively luminesces in the presence of duplex DNA with little to no background from interacting with single‐stranded DNA. This complex shows promise as a new dye capable of selectively staining double‐ versus single‐stranded DNA in gel electrophoresis, which cannot be done with conventional SYBR dyes.  相似文献   

8.
The cyclo‐P4 complexes [CpRTa(CO)24‐P4)] (CpR: Cp′′=1,3‐C5H3tBu2, Cp′′′=1,2,4‐C5H2tBu3) turned out to be predestined for the formation of hollow spherical supramolecules with non‐classical fullerene‐like topology. The resulting assemblies constructed with CuX (X=Cl, Br) showed a highly symmetric 32‐vertex core of solely four‐ and six‐membered rings. In some supramolecules, the inner cavity was occupied by an additional CuX unit. On the other hand, using CuI, two different supramolecules with either peanut‐ or pear‐like shapes and outer diameters in the range of 2–2.5 nm were isolated. Furthermore, the spherical supramolecules containing Cp′′′ ligands at tantalum are soluble in CH2Cl2. NMR spectroscopic investigations in solution revealed the formation of isomeric supramolecules owing to the steric hindrance caused by the third tBu group on the Cp′′′ ligand. In addition, a 2D coordination polymer was obtained and structurally characterized.  相似文献   

9.
A controlling influence on the self‐assembly in the complexation reaction of a mixture of methylene‐ and ethylene‐bridged bis(catechol) ligands ( 1 ‐H4 and 2 ‐H4, respectively) with titanium(IV ) ions is exerted by alkali metal cations (see scheme). Thus, not a complicated mixture of complexes, but as a result of a self‐recognition of the ligands only well‐defined products are formed.  相似文献   

10.
The reactions of di(2‐thienyl)mercury, 2‐thienylmercury chloride and 2‐furylmercury chloride with a variety of nitrogen‐ and phosphorus‐containing ligands have been studied. The presence of the electron‐withdrawing heteroatoms results in these mercurials being stronger acceptors than the corresponding phenylmercury compounds. The complexes have been characterized by elemental analysis, melting points, infrared, and 199Hg NMR spectroscopy. 2,9‐Dimethyl‐ and 3,4,7,8‐tetramethyl‐phenanthroline form 1:1 chelate complexes, as does 1,2‐bis(diphenylphosphino)ethane, whereas ethylenediamine and 2,2′‐bipyridyl do not form complexes. Though non‐chelating ligands such as 2,4′‐ and 4,4′‐bipyridyl do not form complexes, bis(diphenylphosphino)methane forms 1:2 complexes in which the ligand bridges two mercury atoms. Monodentate ligands, such as triphenylphosphine, cause disproportionation of the organomercury chloride. 2‐Thienylmercury chloride forms a 4:1 complex with 4,4′‐dipyridyl disulfide in which it is believed that a molecule of the organomercurial is coordinated to both of the nitrogen and both of the sulfur atoms. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
A convenient method for the preparation of diphenylboron chelates from ammonium tetraphenylborate is described. A variety of five‐ or six‐membered O,O‐, N,O‐ and N,N‐chelates were obtained in yields from 60 to 90 %. The isolated compounds were characterized by elemental analysis, IR spectroscopy and multinuclear magnetic resonance spectroscopy (1H, 13C, and 11B). The crystal and molecular structures of (pyridine‐2‐acetyloximato)diphenylboron and (1‐phenylazo‐2‐naphtholato)diphenylboron were determined by X‐ray diffraction on single crystals.  相似文献   

12.
Dynamic supramolecular systems involving a tetratopic palladium(II) acceptor and three different pyridine‐ and imidazole‐based donors have been used for self‐selection by a synergistic effect of morphological information and coordination ability of ligands through specific coordination interactions. Three different cages were first synthesized by two‐component self‐assembly of individual donor and acceptor. When all four components were allowed to interact in a reaction mixture, only one out of three cages was isolated. The preferential binding affinity towards a particular partner was also established by transforming a non‐preferred cage into a preferred cage by interaction with the appropriate ligand. Computational studies further supported the fact that coordination interaction of imidazole moiety to PdII is enthalpically more preferred compared to pyridine, which drives the selection process. Analysis of crystal packing of both complexes indicated the presence of strong hydrogen bonds between nitrate and water molecules and also H‐bonded 3D networks of water. Both complexes exhibit promising proton conductivity (10?5 to ca. 10?3 S cm?1) at ambient temperature under a relative humidity of circa 98 % with low activation energy.  相似文献   

13.
Novel ruthenium (II) complexes were prepared containing 2‐phenyl‐1,8‐naphthyridine derivatives. The coordination modes of these ligands were modified by addition of coordinating solvents such as water into the ethanolic reaction media. Under these conditions 1,8‐naphthyridine (napy) moieties act as monodentade ligands forming unusual [Ru(CO)2Cl21‐2‐phenyl‐1,8‐naphthyridine‐ kN )(η1‐2‐phenyl‐1,8‐naphthyridine‐kN′)] complexes. The reaction was reproducible when different 2‐phenyl‐1,8‐naphthyridine derivatives were used. On the other hand, when dry ethanol was used as the solvent we obtained complexes with napy moieties acting as a chelating ligand. The structures proposed for these complexes were supported by NMR spectra, and the presence of two ligands in the [Ru(CO)2Cl21‐2‐phenyl‐1,8‐naphthyridine‐ kN )(η1‐2‐phenyl‐1,8‐naphthyridine‐kN′)] type complexes was confirmed using elemental analysis. All complexes were tested as catalysts in the hydroformylation of styrene showing moderate activity in N,N′‐dimethylformamide. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
For the asymmetric isomerization of geranyl‐ or neryldiethylamine ((E)‐ or (Z)‐ 1 , resp.) and allyl alcohols geraniol or nerol ((E)‐ or (Z)‐ 2 , resp.) to citronellal ( 4 ) in the presence of a [RhI(ligand)cycloocta‐1,5‐diene)]+ catalyst, the atropic ligands 5 – 11 are compared under homogeneous and polymer‐supported conditions with the non‐C2‐symmetrical diphosphino ferrocene ligands 12 – 16 . The tBu‐josiphos ligand 13 or daniphos ligand 19 , available in both antipodal series, already catalyse the reaction of (E)‐ 1 at 20° (97% e.e.) and favourably compare with the binap ligand 5 (see Table 1). Silica‐gel‐ or polymer‐supported diphosphino ligands usually afford similar selectivity as compared to the corresponding ligands applied under homogeneous conditions, but are generally less reactive. In this context, a polymer‐supported ligand of interest is the polymer‐anchored binap (R)‐ 6 , in terms of reactivity, selectivity, and recoverability, with a turnover of more than 14400.  相似文献   

15.
Self‐assembled metallosupramolecular architectures (MSAs) with built‐in functionalities such as light‐harvesting metal centers are a promising approach for developing emergent properties within discrete molecular systems. Herein we describe the synthesis of two new but simple “click” ligands featuring a bidentate 2‐pyridyl‐1,2,3‐triazole chelate pocket linked to a monodentate pyridyl (either 3‐ or 4‐substituted, L1 and L2 ) unit. The ligands and the corresponding four PdIIand PtIImetallo‐ligands ( Pd1 , Pd2 , Pt1 and Pt2 ) were synthesized and characterized using nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization mass spectrometry (ESI‐MS), and X‐ray crystallography. Solid‐state characterization of the series of ligands and metallo‐ligands revealed that these compounds display a co‐planar conformation of all the aryl units. The PtIIcontaining metallo‐ligands ( Pt1 and Pt2 ) were found to assemble into square ( Sqr ) and triangular ( Tri ) shaped architectures when combined with neutral PdCl2 linker units. Additionally, the ability of the PtIImetallo‐ligands and Tri to photocatalyze the cycloaddition of singlet oxygen to anthracene was investigated.  相似文献   

16.
Compared to two‐dimensional substrates, only a few methodologies exist for the spatially controlled decoration of three‐dimensional objects, such as microparticles. Combining electrohydrodynamic co‐jetting with synthetic polymer chemistry, we were able to create two‐ and three‐patch microparticles displaying chemically orthogonal anchor groups on three distinct surface patches of the same particle. This approach takes advantage of a combination of novel chemically orthogonal polylactide‐based polymers and their processing by electrohydrodynamic co‐jetting to yield unprecedented multifunctional microparticles. Several micropatterned particles were fabricated displaying orthogonal click functionalities. Specifically, we demonstrate novel two‐ and three‐patch particles. Multi‐patch particles are highly sought after for their potential to present multiple distinct ligands in a directional manner. This work clearly establishes a viable route towards orthogonal reaction strategies on multivalent micropatterned particles.  相似文献   

17.
Both trans and cis isomers of azobenzene‐linked bis‐terpyridine ligand L1 were incorporated in rigid macrocycles linked by FeII(tpy)2 (tpy: terpyridine) units. The complex of the longer trans‐ L1 is dinuclear [(trans‐ L1 )2 ? FeII2], whereas the complex of the shorter cis‐ L1 is mononuclear [cis‐ L1? FeII]. The complex cis‐ L1? FeII was not only thermally stable but also photochemically inactive. These results indicate a perfectly locked state of cis‐azobenzene. The stable macrocyclic structure of cis‐ L1? FeII causes locking of the isomerization. To the best of our knowledge, this is first example of dual locking of photo‐ and thermal isomerization of cis‐azobenzene.  相似文献   

18.
The repeating guest units of poly‐(R)‐ 2 were selectively encapsulated by the self‐assembled capsule poly‐ 1 possessing eight polymer side chains to form the supramolecular graft polymer (poly‐ 1 )n?poly‐(R)‐ 2 . The encapsulation of the guest units was confirmed by 1H NMR spectroscopy and the DOSY technique. The hydrodynamic radius of the graft polymer structure was greatly increased upon the complexation of poly‐ 1 . The supramolecular graft polymer (poly‐ 1 )n?poly‐(R)‐ 2 was stably formed in the 1:1 host–guest ratio, which increased the glass transition temperature by more than 10 °C compared to that of poly‐ 1 . AFM visualized that (poly‐ 1 )n?poly‐(R)‐ 2 formed the networked structure on mica. The (poly‐ 1 )n?poly‐(R)‐ 2 gelled in 1,1,2,2‐tetrachloroethane, which led to fabrication of distinct viscoelastic materials that demonstrated self‐healing behavior in a tensile test.  相似文献   

19.
Complexes [NiI3(mpta)2]I ( 1 ) and [NiI3(ppta)2]I ( 2 ) have been synthesized by reaction of nickel(II) halide salts with ‐1‐methyl‐1‐azonia‐3,5‐diaza‐7‐phosphatricyclo[3.3.1.13,7]decane iodide (mpta+I?) and 1‐(n‐propyl)‐1‐azonia‐3,5‐diaza‐7‐phosphatricyclo[3.3.1.13,7]decane bromide (ppta+Br?) respectively. The crystal structures of compounds 1 and 2 are described and are similar, with both compounds crystallizing in monoclinic space groups. The geometry about both nickel atoms is that of a trigonal bipyramid with the cationic phosphine ligands found in the axial positions and the iodide ligands arranged in the equatorial plane.  相似文献   

20.
Mixed self‐assembly of ligands 1 and 2 , PXDA ( 3 ), and Pd(NO3)2 afforded metal organic polyhedra ( MOP 1  –  MOP 3 ) which bear 24 covalently attached CB[7] and cyclooctyne moieties. Post assembly modification (PAM) of MOP 3 by covalent strain promoted alkyne azide click reaction provided MOP 4 R bearing covalently attached functionality (PEG, sulfonate, biotin, c‐RGD, fluorescein, and cyanine). Orthogonal CB[7]·guest mediated non‐covalent PAM of MOP 4 R with Ad‐ FITC afforded MOP 5 RGD • Ad‐ FITC and MOP 5 biotin • Ad‐ FITC . Flow cytometry analysis of the uptake of MOP 5 RGD • Ad‐ FITC toward U87 cells demonstrated improved uptake relative to control MOP lacking c‐RGD ligands. These results suggest a broad applicability of orthogonally functionalizable (covalent and non‐covalent) MOPs in targeted drug delivery and imaging applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号