首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
By using octahedral gold nanocrystals with sizes of approximately 50 nm as the structure-directing cores for the overgrowth of Pd shells, Au-Pd core-shell heterostructures with systematic shape evolution can be directly synthesized. Core-shell octahedra, truncated octahedra, cuboctahedra, truncated cubes, and concave cubes were produced by progressively decreasing the amount of the gold nanocrystal solution introduced into the reaction mixture containing cetyltrimethylammonium bromide (CTAB), H(2)PdCl(4), and ascorbic acid. The core-shell structure and composition of these nanocrystals has been confirmed. Only the concave cubes are bounded by a variety of high-index facets. This may be a manifestation of the release of lattice strain with their thick shells at the corners. Formation of the [CTA](2)[PdBr(4)] complex species has been identified spectroscopically. Time-dependent UV-vis absorption spectra showed faster Pd source consumption rates in the growth of truncated cubes and concave cubes, while a much slower reduction rate was observed in the generation of octahedra. The concave cubes and octahedra were used as catalysts for a Suzuki coupling reaction. They can all serve as effective and recyclable catalysts, but the concave cubes gave higher product yields with a shorter reaction time attributed to their high-index surface facets. The concave cubes can also catalyze a wide range of Suzuki coupling reactions using aryl iodides and arylboronic acids with electron-donating and -withdrawing substituents.  相似文献   

2.
We report the development of a seed‐mediated and iodide‐assisted method for the synthesis of monodisperse gold nanocrystals with systematic shape evolution from rhombic dodecahedral to octahedral structures. Particle growth is complete in 15 min at room temperature, so the process is fast and energy‐efficient. By progressively increasing the volume of KI used in a growth solution while keeping the amount of ascorbic acid added constant, nanocrystals with morphologies that vary from rhombic dodecahedral to rhombicuboctahedral, edge‐ and corner‐truncated octahedral, corner‐truncated octahedral, and octahedral structures were synthesized. The nanocrystals are monodisperse in size and readily form self‐assembled structures on substrates. By simply adjusting the volume of gold seed solution added to a growth solution, particle sizes of the octahedral gold nanocrystals can be tuned with average opposite corner‐to‐corner distances of 42, 48, 54, 60, 68, 93, 107, and 125 nm. In the presence of HAuCl4, iodide may act as a reducing agent. Variation of its volume in the solution may slightly modulate the reduction rate and affect the final crystal morphology. Intermediate structures collected during crystal growth reveal the presence of many twisted structures that surround a developing nanocrystal core. This nanocrystal growth mechanism and the less important role of surfactant in directing the polyhedral nanocrystal morphology is discussed.  相似文献   

3.
We report the shape and size control of polyhedral gold nanocrystals by a modified polyol process. The rapid reduction of gold precursors in refluxing 1,5-pentanediol has successfully provided a series of gold nanocrystals in the shape of octahedra, truncated octahedra, cuboctahedra, cubes, and higher polygons by incremental changes of silver nitrate concentration. All nanocrystals were obtained quantitatively and were uniform in shape and size in the range of approximately 100 nm. Smaller octahedra and cubes were also prepared by using large amounts of PVP. Silver species generated from AgNO3 seemed to determine the final nanocrystal morphology by the selective growth of {111} and/or the restriction of {100}. The shape evolution of the particles was addressed by quenching the reactions at different time intervals. The approximately 60 nm seeds were generated rapidly and grown slowly with simultaneous edge sharpening. Aging the reaction mixture focused the size and shape of the nanocrystals by Ostwald ripening. We believe that our selective growth conditions can be applied to other shapes and compositions of face-centered cubic metals.  相似文献   

4.
以醋酸铅为铅源,硫代乙酰胺为硫源,在表面活性剂十二烷基硫酸钠(SDS)和十六烷基三甲基溴化铵(CTAB)共同作用下,通过简单地调节水热反应的反应温度控制合成出球状、立方状和空心立方状PbS纳米晶。利用XRD、TEM对合成产物的结构和形貌进行了表征,发现合成的球状、立方状和空心立方状PbS纳米晶尺寸均一,直径为100 nm左右。对球状、立方状和空心立方状PbS纳米晶的形成机理进行了初探,结果表明反应温度较低时,水热反应初始阶段形成的PbS小颗粒呈球形,在表面活性剂SDS的烷基链模板和CTAB微胶束软模板共同作用下生成球状PbS纳米晶;反应温度较高时,水热反应初始阶段形成的PbS小颗粒由于自身的立方相岩盐晶体结构的影响有呈立方状趋势,在SDS和CTAB共同作用下产物堆积成空心立方体状或立方状。  相似文献   

5.
This article reports a systematic study of the seed‐mediated growth of Au@Pd core–shell nanocrystals with a variety of controlled sizes and morphologies. The key to the success of this synthesis is to manipulate the reaction kinetics by tuning a set of reaction parameters, including the type and concentration of capping agent, the amount of ascorbic acid used as the reducing agent, and the injection rate used for the precursor solution. Starting from Au nanospheres of 11 nm in diameter as the seeds, Au@Pd core–shell nanocrystals with a number of morphologies, including octahedra, concave octahedra, rectangular bars, cubes, concave cubes, and dendrites, could all be obtained by simply altering the reaction rate. For the first time, it was possible to generate Au@Pd nanocrystals with concave structures on the surfaces while their sizes were kept below 20 nm. In addition, the as‐prepared Au@Pd nanocubes can be used as seeds to generate Au@Pd@Au and Au@Pd@Au@Pd nanocrystals with multishelled structures.  相似文献   

6.
In this study, a new series of Cu(2)O nanocrystals with systematic shape evolution from cubic to face-raised cubic, edge- and corner-truncated octahedral, all-corner-truncated rhombic dodecahedral, {100}-truncated rhombic dodecahedral, and rhombic dodecahedral structures have been synthesized. The average sizes for the cubes, edge- and corner-truncated octahedra, {100}-truncated rhombic dodecahedra, and rhombic dodecahedra are approximately 200, 140, 270, and 290 nm, respectively. An aqueous mixture of CuCl(2), sodium dodecyl sulfate, NaOH, and NH(2)OH·HCl was prepared to produce these nanocrystals at room temperature. Simple adjustment of the amounts of NH(2)OH·HCl introduced enables this particle shape evolution. These novel particle morphologies have been carefully analyzed by transmission electron microscopy (TEM). The solution color changes quickly from blue to green, yellow, and then orange within 1 min of reaction in the formation of nanocubes, while such color change takes 10-20 min in the growth of rhombic dodecahedra. TEM examination confirmed the rapid production of nanocubes and a substantially slower growth rate for the rhombic dodecahedra. The rhombic dodecahedra exposing only the {110} facets exhibit an exceptionally good photocatalytic activity toward the fast and complete photodegradation of methyl orange due to a high number density of surface copper atoms, demonstrating the importance of their successful preparation. They may serve as effective and cheap catalysts for other photocatalytic reactions and organic coupling reactions.  相似文献   

7.
This article reports a systematic study of the seed-mediated growth of Au@Pd core-shell nanocrystals with a variety of controlled sizes and morphologies. The key to the success of this synthesis is to manipulate the reaction kinetics by tuning a set of reaction parameters, including the type and concentration of capping agent, the amount of ascorbic acid used as the reducing agent, and the injection rate used for the precursor solution. Starting from Au nanospheres of 11?nm in diameter as the seeds, Au@Pd core-shell nanocrystals with a number of morphologies, including octahedra, concave octahedra, rectangular bars, cubes, concave cubes, and dendrites, could all be obtained by simply altering the reaction rate. For the first time, it was possible to generate Au@Pd nanocrystals with concave structures on the surfaces while their sizes were kept below 20?nm. In addition, the as-prepared Au@Pd nanocubes can be used as seeds to generate Au@Pd@Au and Au@Pd@Au@Pd nanocrystals with multishelled structures.  相似文献   

8.
Well-defined single-crystalline PbS nano- and microstructures including dendrites, multipods, truncated nanocubes, and nanocubes were synthesized in high yield by a simple solution route. Novel star-shaped PbS dendrites with six symmetric arms along the 100 direction, each of which shows one trunk (long axis) and four branches (short axes), have been achieved using Pb(AC)2 and thioacetamide (TAA) as precursors, under the molar ratio Pb(AC)2/TAA = 2/1, at initial reaction temperature 80 degrees C, refluxing for 30 min at 100 degrees C, in the presence of cetyltrimethylammonium bromine (CTAB). The "nanorods" in each branch are parallel to each other in the same plane and are perpendicular to the trunk. The truncated nanocubes mainly bounded by the {100} plane were prepared under a different Pb(AC)2/TAA molar ratio, at initial reaction temperature 40 degrees C, refluxing for 12 h at 100 degrees C. Based on the systematic studies on their shape evolution, a possible growth mechanism of these PbS nano- and microstructures was proposed. The shapes of PbS nanocrystals with face-centered cubic (fcc) structure are mainly determined by the ratio (R) between the growth rates along the (100) and (111) directions. The Pb(AC)2/TAA molar ratio and the initial reaction temperature influence the growth ratio R in the formation of PbS nuclei at an early stage, which results in the final morphology of PbS nanocrystals. Under the current experimental conditions, we can control the PbS shape evolution by simply tuning the molar ratio, the initial reaction temperature, and the period of reaction. Based on the systematic studies on the shape evolution, this approach is expected to be employed for the control-shaped synthesis of other fcc structural semiconductor nanomaterials. The photoluminescence properties were investigated and the prepared nano- and microstructures displayed a very strong luminescence around 600-650 nm at room temperature.  相似文献   

9.
Au–Pd core–shell nanocrystals with tetrahexahedral (THH), cubic, and octahedral shapes and comparable sizes were synthesized. Similar‐sized Au and Pd cubes and octahedra were also prepared. These nanocrystals were used for the hydrogen‐evolution reaction (HER) from ammonia borane. Light irradiation can enhance the reaction rate for all the catalysts. In particular, Au–Pd THH exposing {730} facets showed the highest turnover frequency for hydrogen evolution under light with 3‐fold rate enhancement benefiting from lattice strain, modified surface electronic state, and a broader range of light absorption. Finite‐difference time‐domain (FDTD) simulations show a stronger electric field enhancement on Au–Pd core–shell THH than those on other Pd‐containing nanocrystals. Light‐assisted nitro reduction by ammonia borane on Au–Pd THH was also demonstrated. Au–Pd tetrahexahedra supported on activated carbon can act as a superior recyclable plasmonic photocatalyst for hydrogen evolution.  相似文献   

10.
We have synthesized nanoparticles of hexagonal CdS in the diameter range 3-13 nm by the reaction of cadmium acetate dihydrate with thioacetamide in imidazolium [BMIM]-based ionic liquids. We have obtained three different particle sizes of CdS by changing the anion of the ionic liquid. Addition of trioctylphosphine oxide (TOPO) to the reaction mixture causes greater monodispersity as well as smaller particle size, while addition of ethylenediamine produces nanorods of 7 nm average diameter. Hexagonal ZnS and cubic PbS nanoparticles with average diameters of 3 and 10 nm, respectively, have been prepared by the reaction of the metal acetates with thioacetamide in [BMIM][BF4]. Hexagonal CdSe nanoparticles with an average diameter 12 nm were obtained by the reaction of cadmium acetate dihydrate with dimethylselenourea in [BMIM][BF4]. In this case also we observe the same effect of the addition of TOPO as in the case of CdS. Addition of ethylenediamine to the reaction mixture gives rise to nanorods. ZnSe nanowires with a cubic structures, possible diameters in the range 70-100 nm by the reaction of zinc acetate dihydrate with dimethylselenourea in [BMIM][MeSO4]. The nanostructures obtained are single crystalline in all the cases. Most of the nanostructures show characteristic UV/Vis absorption and photoluminescence emission spectra. The thermodynamically most stable structures are generally produced in the synthesis carried out in ionic liquids.  相似文献   

11.
Quasi-polyhedral ZnS nanocrystals with monodisperse tunable sizes of 40, 52, 62, 73, 82, 94, 103, and 110 nm have been synthesized in aqueous solution by regulating the amounts of thioacetamide, zinc acetate, and acetic acid added. The mixture was heated to 120°C in an oven for 10–20 min to produce the nanocrystals. Structural characterization reveals the formation of cubic zinc blende ZnS with some polycrystallinity, which possibly influences their optical properties, that is, the measured band gaps do not give a continuous narrowing trend with increasing particle size. However, when particle sizes are expressed in terms of volumes, the absorption band positions show steady red shifts with increasing crystal dimensions and very small wavelength changes for nanocrystals beyond 90 nm. Thus, these ZnS nanocrystals still possess some size-dependent optical properties despite their polycrystalline nature.  相似文献   

12.
Liquid-liquid phase transfer has been used to synthesize platinum nanocrystals with a cubic morphology. By finely tuning the parameters controlling the nucleation and growth processes, nanometric truncated cubes or perfect cubes may be obtained. To our knowledge, this is the first time such shapes are obtained with this procedure. The importance of both the length of the capping agent to control the growth process and the bromide anions as poison for the (111) facet is shown. The low degree of size polydispersity allows these nanocrystals to self-assemble with a long-range ordering in two-dimensional and three-dimensional supracrystals. According to the nanocrystal shape, simple cubic or face-centered cubic supracrystals are observed. It is remarkable to notice that well-faceted supracrystals with sizes on the order of 10 microm may be obtained.  相似文献   

13.
We report the development of a facile method for the synthesis of Ag(2)O crystals with systematic shape evolution from cubic to edge- and corner-truncated cubic, rhombicuboctahedral, edge- and corner-truncated octahedral, octahedral, and hexapod structures by mixing AgNO(3), NH(4)NO(3), and NaOH at molar ratios of 1:2:11.8. A sufficient volume of NaOH solution was first added to a mixture of AgNO(3) and NH(4)NO(3) solution to promote the formation of Ag(NH(3))(2)(+) complex ions and the growth of Ag(2)O nanocrystals with good morphological control. The crystals are mostly submicrometer-sized. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy characterization has been performed to determine the crystalline surface facets. A band gap value of approximately 1.45 eV has been found for the octahedral Ag(2)O crystals. By changing the molar ratios of AgNO(3)/NH(4)NO(3)/NaOH to 1:2:41.8, corner-depressed rhombicuboctahedra and elongated hexapods were obtained as a result of enhanced crystal growth along the [100] directions. Smaller nanocubes with average sizes of approximately 200 and 300 nm and octapods can also be prepared by adjusting the reagent molar ratios and their added volumes. Both the octahedra and hexapods with largely silver atom-terminated {111} surface facets responded repulsively and moved to the surface of the solution when dispersing in a solution of positively charged methylene blue, but can be suspended in a negatively charged methyl orange solution. The cubes and octapods, bounded by the {100} faces, were insensitive to the molecular charges in solution. The dramatic facet-dependent surface properties of Ag(2)O crystals have been demonstrated.  相似文献   

14.
We report a facile seed-mediated method for the synthesis of monodisperse polyhedral gold nanoparticles, with systematic shape evolution from octahedral to trisoctahedral structures. The control over the particle growth process was achieved simply by changing the concentration of the reductant in the growth solution, in the presence of small spherical seed nanoparticles. By progressively increasing the concentration of the reductant used in the growth solution (ascorbic acid), while keeping the amount and type of added surfactant constant, the morphology of the gold nanoparticles was varied from octahedral to truncated octahedral, cuboctahedral, truncated cubic, cubic, and finally trisoctahedral structures. These nanoparticles were monodisperse in size, possessed similar volumes, and were naturally oriented so that their larger crystal planes were face down on quartz substrates when deposited from the solution. By adjusting the volume of gold seed nanoparticle solution added to a growth solution, the size of the simplest gold nanoparticles (with a highly symmetric cubic morphology) could be tuned from 50 ± 2.1 to 112 ± 11 nm. When other seed nanoparticles were used, the size of the cubic Au nanoparticles reached 169 ± 7.0 nm. The nanoparticle growth mechanism and the plasmonic properties of the resulting polyhedral nanoparticles are discussed in this paper.  相似文献   

15.
CuPd nanocrystals with different shapes including cubes, truncated cubes, cuboctahedra, irregular polyhedra, and tetrapods, have been synthesized by the modification of reactant concentrations. The electrocatalytic activity of the CuPd nanocubes toward the oxygen reduction reaction (ORR) is the higher than the commercial Pt/C catalyst.  相似文献   

16.
We report the synthesis of monodisperse Pt nanocrystals with three different shapes-cubes, cuboctahedra, and octahedra, selectively, with similar sizes of 9-10 nm by a modified polyol process. We found that addition of silver ion enhances the crystal growth rate along 100, and essentially determines the shape and surface structure of the Pt nanocrystals. After the reaction, the silver species can be easily removed by repetitive precipitation giving pure Pt nanoparticles. Two-dimensional arrays of the Pt nanocrystals were assembled by using the Langmuir-Blodgett (LB) method. The particles were evenly distributed on the entire substrate, and their surface coverage and density can be precisely controlled by tuning the surface pressure. The resulting Pt LB layers are potential candidates for 2-D model catalysts as a result of their high surface area and the structural uniformity of the metal nanocrystals.  相似文献   

17.
In comparison to the previous lengthy approaches, we described a general and simple strategy for engineering the superlattice assembly of IV-VI semiconductor nanocrystals (NCs) with tunable sizes and morphologies. Not only the well-studied spherical NCs but also some special-shaped NCs, such as the quasi-cubic, cubic, truncated octahedral, and octahedral, could self-assemble into well-ordered patterns, as demonstrated in PbS, PbSe, and PbTe. These results extended our proposed model about the configuration of ligand chains in the superlattice assembly. This powerful capability of assembling superlattices was dominated by a heat-treatment process, providing a significant and extensive direction in the engineering of morphology-tunable NC superlattices.  相似文献   

18.
We demonstrate a novel synthetic scheme that can be used to differentially guide the shape of PbS semiconductor nanocrystals. Our study first demonstrates the discovery of single-crystalline star-shaped nanocrystals as novel transient species. We then carefully probe their shape evolution toward other novel nanostructures (e.g., tadpole-, L-, T-, cross-shapes, highly faceted star shapes, truncated octahedrons and cubes, etc.) and systematically elucidate the key parameters that control these final structures. In principle, through programming these growth parameters, the desired architecture of building blocks of other kinds of nano materials can be constructed.  相似文献   

19.
We have synthesized sub-10 nm Pd cubic and octahedral nanocrystals and then evaluated their activities towards oxygen reduction reaction (ORR). The ORR activity of Pd nanocubes was one order of magnitude higher than that of Pd octahedra, and comparable to that of the state-of-the-art Pt catalysts.  相似文献   

20.
PbS nanocrystals (NCs) ranging between 4–8 nm were incorporated into Zirconium-Silica-Urethane (ZSUR) matrix obtained by the sol-gel method. The sizes of the particles were controlled by temperature treatment and by concentration of PbS in ZSUR matrix. The sizes of PbS NCs were determined by TEM measurements. The quantum size effect could also be extracted from optical absorption and photoluminescence spectra. The new matrix allows incorporation of up to 40% PbS forming a characteristic structure of dendrite by reacting lead acetate with ammonium thiocyanate in sol-gel matrix. The sol precursors of the matrix for Zirconium-Silica-Urethane contained zirconium oxide (ZrO2) matrix solution, tetramethoxysilane (TMOS), 3-glycid oxypropyl trimethoxysilane (GLYMO) and polyethylene urethane silane (PEUS) synthesized separately. The ZrO2 matrix solution was obtained from zirconium n-tetrapropoxide in propanol and acetic acid was used as a chelating agent to stabilize the zirconium oxide precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号