首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large-eddy simulation with filtered-structure-function subgrid model and implicit large-eddy simulation (ILES without explicit subgrid model) using high-order accuracy and high resolution compact scheme have been performed on the tip vortex shedding from a rectangular half-wing with a NACA 0012 airfoil section and a rounded wing tip. The formation of the tip vortex and its initial development in the boundary layer and the near field wake are investigated and analysed in detail. The physics, why the tip vortex, which is originally turbulent in the boundary layer, is re-laminarised and becomes stable and laminar rapidly after shedding in the near field, is revealed by this simulation. The computation also shows the widely used second-order subgrid model is not consistent to six-order compact scheme and would degenerate the six-order LES results to second-order. Therefore, high-order schemes, grid refinement and six-order subgrid models are critical to LES approaches.  相似文献   

2.
使用大涡模拟方法对冲击面为平面的超声速中等欠膨胀冲击射流进行了数值模拟.利用三阶迎风和四阶对称紧致格式对无量纲化轴对称可压缩滤波N-S方程进行空间离散,时间上推进采用的是三阶精度的TVD型Rugge-Kutta法. 通过与经典的冲击射流实验比较,证实了程序的可靠性. 数值模拟得到了流场中不同尺度的涡结构和激波结构,观察到了上行声波和反射波以及流场中不同位置的声源,分析了冲击区剪切层附近区域的压强和涡旋转强度变化的频率、冲击平板上的压强变化频率以及射流剪切层中不同位置的涡合并出现的频率,发现冲击区剪切层附近区域的压强和涡强度变化以及射流剪切层中的涡合并现象和离散频率的冲击单音有重要关联.   相似文献   

3.
Hybrid RANS/LES of flow and heat transfer in round impinging jets   总被引:1,自引:0,他引:1  
Fluid flow and convective heat transfer predictions are presented of round impinging jets for several combinations of nozzle-plate distances H/D = 2, 6 and 13.5 (where D is the nozzle diameter) and Reynolds numbers Re = 5000, 23,000 and 70,000 with the newest version of the k-ω model of Wilcox (2008) and three hybrid RANS/LES models. In the RANS mode of the hybrid RANS/LES models, the k-ω model is recovered. Three formulations are considered to activate the LES mode. The first model is similar to the hybrid models of Davidson and Peng (2003) and Kok et al. (2004). The turbulent length scale is replaced by the grid size in the destruction term of the k-equation and in the definition of the RANS eddy viscosity. As grid size, a maximum measure of the hexahedral grid cell is used. The second model has the same k-equation, but the eddy viscosity is the minimum of the k-ω eddy viscosity and the Smagorinsky eddy viscosity, following a proposal by Batten et al. (2004). The Smagorinsky eddy viscosity is formed with the cube root of the cell volume. The third model has, again, the same k-equation, but has an eddy viscosity which is an intermediate between the eddy viscosities of the first and second models. This is reached by using the cube root of the cell volume in the eddy viscosity formula of the first model.The simulation results are compared with experimental data for the high Reynolds number cases Re = 23,000 and Re = 70,000 and LES data for the low-Reynolds number case Re = 5000. The Reynolds numbers are defined with the nozzle diameter and the bulk velocity at nozzle outlet. At low nozzle-plate distance (the impingement plate is in the core of the jet), turbulent kinetic energy is overpredicted by RANS in the stagnation flow region. This leads to overprediction of the heat transfer rate along the impingement plate in the impact zone. At high nozzle-plate distance (the impingement plate is in the mixed-out region of the jet), the turbulence mixing is underpredicted by RANS in the shear layer of the jet which gives a too high length of the jet core. This also results in overprediction of the heat transfer rate in the impingement zone caused by too big temperature gradients at impingement.All hybrid RANS/LES models are able to correct the heat transfer overprediction of the RANS model. For good predictions at low nozzle-plate distance, it is necessary to sufficiently resolve the formation and development of the near-wall vortices in the jet impingement region. At high nozzle-plate distance, the essence is to capture the evolution and breakup of the flow unsteadiness in the shear layer of the jet, so that accurate mean and fluctuating velocity profiles are obtained in the impingement region. Although the models have a quite different theoretical justification and generate a quite different eddy viscosity in some flow regions, their overall results are very comparable. The reason is that in zones that are crucial for the results, the models behave similarly.  相似文献   

4.
The radial distribution of the recovery factor for a confined impinging jet of high-Prandtl number liquid is investigated by numerical approach with emphasis on its physical mechanism. The recovery factor is determined by the viscous dissipation and Prandtl number. Unlike the case of the gas jet impingement, the recovery factor in the region close to the stagnation point can be much larger than unity, while the recovery factor at the stagnation point approaches zero. The dependence of the recovery factor on the nozzle exit velocity profile, the jet Reynolds number, and the nozzle-to-plate spacing is examined.  相似文献   

5.
Considering the importance of high‐order schemes implementation for the simulation of shock‐containing turbulent flows, the present work involves the assessment of a shock‐detecting sensor for filtering of high‐order compact finite‐difference schemes for simulation of this type of flows. To accomplish this, a sensor that controls the amount of numerical dissipation is applied to a sixth‐order compact scheme as well as a fourth‐order two‐register Runge–Kutta method for numerical simulation of various cases including inviscid and viscous shock–vortex and shock–mixing‐layer interactions. Detailed study is performed to investigate the performance of the sensor, that is, the effect of control parameters employed in the sensor are investigated in the long‐time integration. In addition, the effects of nonlinear weighting factors controlling the value of the second‐order and high‐order filters in fine and coarse non‐uniform grids are investigated. The results indicate the accuracy of the nonlinear filter along with the promising performance of the shock‐detecting sensor, which would pave the way for future simulations of turbulent flows containing shocks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
7.
In this study, high‐order compact finite difference calculations are reported for 2D unsteady incompressible circular vortex flow in primitive variable formulation. The fourth‐order Runge–Kutta temporal discretization is used together with fourth‐ or tenth‐order compact spatial discretization. Dependent on the perturbation initially imposed, the solutions display a tripole, triangular or square vortex. The comparison of the predictions with the detailed spectral calculations of Kloosterziel and Carnevale (J. Fluid Mech. 1999; 388 :217–257) shows that the vorticity fields are very well captured. The spectral resolution of the present method was quantified from the decomposition of the vorticity distribution in its azimuthal components and compared with reported spectral results. Using identical grid resolution to the reference results yields negligible differences in the main features of the flow. The perturbation amplitude and its first harmonic are virtually identical to the reference results for both fourth‐ or tenth‐order spatial discretization, as theoretically expected but seldom a posteriori verified. The differences between the two spatial discretizations appear only for coarser grids, favouring the tenth‐order discretization. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Turbulent mixing takes an important role in chemical engineering, especially when the chemical reaction is fast compared to the mixing time. In this context a detailed knowledge of the flow field, the distribution of turbulent kinetic energy (TKE) and its dissipation rate is important, as these quantities are used for many mixing models. For this reason we conduct a direct numerical simulation (DNS) of a confined impinging jet reactor (CIJR) at Re = 500 and Sc = 1. The data is compared with particle image velocimetry (PIV) measurements and the basic flow features match between simulation and experiment. The DNS data is analysed and it is shown that the flow is dominated by a stable vortex in the main mixing duct. High intensities of turbulent kinetic energy and dissipation are found in the impingement zone which decrease rapidly towards the exit of the CIJR. In the whole CIJR the turbulence is not in equilibrium. The strong mixing in the impingement zone leads to a rapid development of a monomodal PDF. Due to the special properties of the flow field, a bimodal PDF is generated in cross-sections downstream the impingement zone, that slowly relaxes under relaminarising conditions. The time required for meso-mixing is dominating the overall mixing performance.  相似文献   

9.
A high‐order accurate upwind compact difference scheme with an optimal control coefficient is developed to track the flame front of a premixed V‐flame. In multi‐dimensional problems, dispersion effect appears in the form of anisotropy. By means of Fourier analysis of the operators, anisotropic effects of the upwind compact difference schemes are analysed. Based on a level set algorithm with the effect of exothermicity and baroclinicity, the flame front is tracked. The high‐order accurate upwind compact scheme is employed to approximate the level set equation. In order to suppress numerical oscillations, the group velocity control technique is used and the upwind compact difference scheme is combined with the random vortex method to simulate the turbulent premixed V‐flame. Distributions of velocities and flame brush thickness are obtained by this technique and found to be comparable with experimental measurement. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Most of the fundamental studies of the use of air‐jet vortex generators (AJVGs) have concentrated on their potential ability to inhibit boundary layer separation on aerofoils. However, AJVGs may be of use in controlling or enhancing certain features of internal duct flows. For example, they may be of use in controlling the boundary layer at the entrance to engine air intakes, or as a means of increasing mixing and heat transfer. The objective of this paper is to analyse the flow field in the proximity of an air‐jet vortex generator array in a duct by using two local numerical models, i.e. a simple flat plate model and a more geometrically faithful sector model. The sector model mirrors the circular nature of the duct's cross‐section and the centre line conditions on the upper boundary. The flow was assumed fully turbulent and was solved using the finite volume, Navier–Stokes Code CFX 4 (CFDS, AEA Technology, Harwell) on a non‐orthogonal, body‐fitted, grid using the k–ε turbulence model and standard wall functions. Streamwise, vertical and cross‐stream velocity profiles, circulation and peak vorticity decay, peak vorticity paths in cross‐stream and streamwise direction, cross‐stream vorticity profiles and cross‐stream wall shear stress distributions were predicted. Negligible difference in results was observed between the flat plate and the sector model, since the produced vortices were small relative to the duct diameter and close to the surface. The flow field was most enhanced, i.e. maximum thinning of the boundary layer, with a configuration of 30° pitch and 75° skew angle. No significant difference in results could be observed between co‐ and counter‐rotating vortex arrays. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
A multi‐entropy‐level lattice Boltzmann model for two‐dimensional sound wave equation in the small perturbation flows is presented. In this model, we used higher‐order moment method, multi‐scale technique and the Chapman–Enskog expansion, and multi‐entropy‐level to obtain sound wave equation with isentropic equation. As numerical examples, the Doppler effects in the sound wave propagation, the sound scattering from circular cylinder are simulated. The numerical results show that this model can be used to simulate sound wave propagation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
This work investigates a high‐order numerical method which is suitable for performing large‐eddy simulations, particularly those containing wall‐bounded regions which are considered on stretched curvilinear meshes. Spatial derivatives are represented by a sixth‐order compact approximation that is used in conjunction with a tenth‐order non‐dispersive filter. The scheme employs a time‐implicit approximately factored finite‐difference algorithm, and applies Newton‐like subiterations to achieve second‐order temporal and sixth‐order spatial accuracy. Both the Smagorinsky and dynamic subgrid‐scale stress models are incorporated in the computations, and are used for comparison along with simulations where no model is employed. Details of the method are summarized, and a series of classic validating computations are performed. These include the decay of compressible isotropic turbulence, turbulent channel flow, and the subsonic flow past a circular cylinder. For each of these cases, it was found that the method was robust and provided an accurate means of describing the flowfield, based upon comparisons with previous existing numerical results and experimental data. Published in 2003 by John Wiley & Sons, Ltd.  相似文献   

13.
A series of spatially developing mixing layers are simulated using the large eddy simulation (LES) technique. A hyperbolic tangent function and data derived from boundary layer simulations are used to generate the inflow condition, and their effects on the flow are compared. The simulations are performed in both two and three dimensions. In two‐dimensional simulations, both types of inflow conditions produce a layer that grows through successive pairings of Kelvin–Helmholtz (K–H) vortices, but the composition ratio is lower for the hyperbolic tangent inflow simulations. The two‐dimensional simulations do not undergo a transition to turbulence. The three‐dimensional simulations produce a transition to turbulence, and coherent structures are found in the post‐transition region of the flow. The composition ratio of the three‐dimensional layers is reduced in comparison to the counterpart two‐dimensional runs. The mechanisms of growth are investigated in each type of simulation, and amalgamative pairing interactions are found in the pre‐transition region of the three‐dimensional simulations, and throughout the entire computational domain of those carried out in two‐dimensions. The structures beyond the post‐transition region of the three‐dimensional simulations appear to behave in a much different manner to their pre‐transition cousins, with no pairing‐type interactions observed in the turbulent flow. In order to accurately simulate spatially developing mixing layers, it is postulated that the inflow conditions must closely correspond to the conditions present in the reference experiment. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
This work describes numerical simulations of a hot jet in cross‐flow with applications to anti‐ice systems of aircraft engine nacelles. Numerical results are compared with experimental measurements obtained at ONERA to evaluate the performances of LES in this industrial context. The combination of complex geometries requiring unstructured meshes and high Reynolds number does not allow the resolution of boundary layers so that wall models must be employed. In this framework, the relative influence of subgrid‐scale modelling and conjugate heat transfer in LESs of aerothermal flows is evaluated. After a general overview of the transverse jet simulation results, a LES coupled with a heat transfer solver in the walls is used to show that thermal boundary conditions at the wall have more influence on the results than subgrid scale models. Coupling fluid flow and heat transfer in solids simulations is the only method to specify their respective thermal boundary conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Six different models were evaluated for reproducing internal solitary waves which occur and propagate in a stratified flow field with a sharp interface. Three stages were used to compute internal solitary waves in a stratified field: (1) first‐phase computation of momentum equations, (2) second‐phase computation of momentum equations, which corresponds to computing the Poisson's equation, and (3) density computation. The six models discussed in this paper consisted of combinations of four different schemes, a three‐point combined compact difference scheme (CCD), a normal central difference scheme (CDS), a cubic‐polynomial interpolation (CIP), and an exactly conservative semi‐Lagrangian scheme (CIP‐CSL2). The residual cutting method was used to solve the Poisson's equation. Three tests were used to confirm the validity of the computations using KdV theory; i.e. the incremental wave speed and amplitude of internal solitary waves, the maximum horizontal velocity and amplitude, and the wave form. In terms of the shape of an internal solitary wave, using CIP for momentum equations was found to provide better performance than CCD. These results suggest one of the most appropriate scheme for reproducing internal solitary waves may be one in which CIP is used for momentum equations and CCD to solve the Poisson's equation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
In the first part of our paper, we have extended the concepts of the classical convolution and the convolution scalar product given by I. Hlaváck and presented the concepts of the convolution vector and the convolution vector scalar product, which enable us to extend the initial value as well as the initial-boundary value problems for the equation with the operator coefficients to those for the system of equations with the operator coefficients.In the second part of this paper, based on the concepts of the convolution vector and the convolution vector scalar product, two fundamental types of reciprocal theorems of the non-local micropolar linear elastodynamics for inhomogeneous and anisotropic solids are derived.In the third part of this paper, based on the concepts and results in the first and second parts as well as the Lagrange multiplies method which is presented by W. Z. Chien, four main types of variational principles are given for the nonlocal micropolar linear elastodynamics for inhomogeneous and anisotropic solids. These are the counterparts of the variational principles of Hu-Washizu type, Hellinger-Reissner type and Gurtin type in classical elasticity as well as Hlaváck type and Iesan type in local micropolar and nonlocal elasticity. Finally, we have proved the equivalence of the last two main variational principles which are given in this paper.  相似文献   

17.
In this paper, we introduce a finite‐volume kinetic BGK scheme and its applications to the study of roll and solitary waves. The current scheme is based on the numerical solution of the gas‐kinetic Bhatnagar–Gross–Krook model in the flux evaluation across each cell interface. An intrinsic connection between the BGK model and time‐dependent, non‐linear, non‐homogeneous shallow‐water equations enables us to solve shallow‐water equations automatically with our kinetic scheme. The analytical solution, experimental measurements, and numerical calculations for problems associated with roll‐waves down an inclined open channel and solitary waves incident on a sloped beach are also presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
对平面激波和单个矩形障碍物作用的过程进行了数值模拟,研究了反射产生的上行爆轰波在下游可燃气体中形成爆轰波的过程。数值结果表明,下游爆轰波形成过程主要有2种模式:爆轰波直接绕射和绕射波在上壁面反射,这和已有的实验结果是一致的。通过研究下游爆轰波的形成过程受入射激波马赫数、混合气体的压力和管道尺度的影响,分析了上游爆轰波向下游传播的波动力学过程,讨论了2种形成过程的作用规律和控制因素,阐明了下游爆轰波的形成规律。  相似文献   

19.
By comparing the energy spectrum and total kinetic energy, the effects of numerical errors (which arise from aliasing and discretization errors), subgrid-scale (SGS) models, and their interactions on direct numerical simulation (DNS) and large eddy simulation (LES) are investigated. The decaying isotropic turbulence is chosen as the test case. To simulate complex geometries, both the spectral method and Pade compact difference schemes are studied. The truncated Navier-Stokes (TNS) equation model with Pade discrete filter is adopted as the SGS model. It is found that the discretization error plays a key role in DNS. Low order difference schemes may be unsuitable. However, for LES, it is found that the SGS model can represent the effect of small scales to large scales and dump the numerical errors. Therefore, reasonable results can also be obtained with a low order discretization scheme.  相似文献   

20.
Longitudinal vortices disrupt the growth of the thermal boundary layer, thereby the vortex generators producing the longitudinal vortices are well known for the enhancement of heat transfer in compact heat exchangers. The present investigation determines the heat transfer characteristics with secondary flow analysis in plate fin triangular ducts with delta wing vortex generators. This geometrical configuration is investigated for various angles of attack of the wing i.e. 15°, 20°, 26° and 37° and Reynolds numbers 100 and 200. The constant wall temperature boundary condition is used. The solution of the complete Navier Stokes equation and the energy equation is carried out using the staggered grid arrangement. The performance of the combination of triangular secondary fins and delta wing with stamping on slant surfaces has also been studied. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号