首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
冲击射流的噪声抑制对于研究短程起飞和垂直起降飞行器(STOVL)是极其重要的. 为了研究冲击射流噪声尤其是冲击单音与涡结构尺度之间的关系以及反馈声波的上传方向,采用小波分析技术和``声类比'方法来分析冲击单音的传播方向. 研究中用到的冲击射流的速度场由PIV技术给出,冲击单音的频率通过噪声场的测量获得. 利用双正交小波变换来提取冲击射流速度场中含有的波动信息,结合冲击单音的频率特性对噪声场进行研究.研究结果表明大尺度结构是冲击单音的``拟声源'. 此外,还可以看出大尺度涡结构产生的反馈声波一部分向喷嘴出口处传播,形成反馈环;另一部分反馈声波向四周传播.   相似文献   

2.
Large-scale vortical structures and associated mixing in methane/air swirling coaxial jets are actively controlled by manipulating the outer shear layer of the outer swirling coaxial jet with miniature flap actuators. In order to investigate the control mechanisms, stereoscopic particle image verocimetry (stereo-PIV) and plannar laser-induced fluorescence (PLIF) techniques are employed. It is found that intense vortex rings are produced in the outer shear layer in phase with the periodic flap motion regardless of the swirl number examined. The vortical structures in the inner shear layer, however, are strongly dependent on the swirl rate. This is because the central methane jet is accelerated by the negative axial pressure gradient, of which strength is determined by the swirl. As a result, the inner vortex formation is significantly suppressed at a higher swirl rate. On the other hand, at a relatively low swirl rate, the inner vortices are shed continuously and the methane jet is pinched off. This particular mode promotes the mixing of methane and air, so that the flammable mixture can be formed at an earlier stage of the jet flow development. In addition, the evolution of secondary streamwise vortices is prompted by the combination of the periodic vortex ring shedding and the swirl. They also contribute to the mixing enhancement in the downstream region.  相似文献   

3.
An experimental investigation has been completed to study several methods of avoiding the jet screech phenomenon due to air jet impingement on solid boundaries. Measurements were completed in the Mach number region of M=0.5 using a 25 mm diameter nozzle with the air jet impinging on flat, concave and convex boundaries. Sound pressure levels were recorded in the plane of the nozzle outlet at a distance of 1.46 m from the jet axis. Hot wire studies and the stagnation pressure at the impingement zone of the jet were also recorded.With the air jet impinging on the flat board normal to its surface a maximum sound pressure occurred at a spacing of approximately two nozzle diameters producing a distinct screech at a sound level of 20 dB above that of the free jet. Three methods of preventing this screech were studied. First, by inserting disturbances into the shear layer at the nozzle exit; second, by changing the geometry of the boundary shape to improve the jet stability in the impingement region; and third, by introducing disturbances at the stagnation region which had the effect of displacing the distinct screech to another frequency range.  相似文献   

4.
The effects of jet pulsation on flow field and quasi wall shear stress of an impingement configuration were investigated experimentally. The excitation Strouhal number and amplitude were varied as the most influential parameters. A line-array with three submerged air jets, and a confining plate were used. The flow field analysis by means of time resolved particle image velocimetry shows that the controlled excitation can considerably affect the near-field flow of an impinging jet array. These effects are visualized as organization of the coherent flow structures. Augmentation of the Kelvin–Helmholtz vortices in the jet shear layer depends on the Strouhal number and pulsation magnitude and can be associated with pairing of small scale vortices in the jet. A total maximum of vortex strength was observed when exciting with Sr = 0.82 and coincident high amplitudes.Time resolved interaction between impinging vortices and impingement plate boundary layer due to jet excitation was verified by using an array of 5 μm surface hot wires. Corresponding to the global flow field modification due to periodic jet pulsation, the impact of the vortex rings on the wall boundary layer is highly influenced by the above mentioned excitation parameters and reaches a maximum at Sr = 0.82.  相似文献   

5.
为研究小口径喷嘴冲击射流的噪声特性,测定了3mm口径的轴对称收缩喷嘴在各种压比情况下产生的亚音速和超音速射流冲击坚固大平板产生的噪声。发现噪声在空间呈近似四瓣分布,当喷嘴与平板距离减小时,噪声指向壁射流下游的瓣到增强,反之,噪声指向喷嘴上游的瓣得到增强。噪声随喷嘴距平板距离的增加呈增强的趋势,在距平板一定距离内有锯齿现象。噪声随喷嘴压比的增加而增强,相应于各种工况,存在一不同的压比值,此压比之前,噪声随压比的增大而迅速提高,但有起伏现象,在此压比之后,噪声平缓地随压比的增大而增强。  相似文献   

6.
不完全膨胀超声速射流的势核中会产生准周期的激波栅格结构, 其与剪切层内拟序结构的相互作用会产生激波噪声. 啸声是主要向上游方向传播的、具有离散频率的高强度激波噪声, 其产生是受一种非线性的声反馈环机制驱动. 精确定位啸声的声源位置是定量理解啸声反馈环机制和发展准确的啸声预测模型的一个关键所在. 为了分析近场啸声, 本文采用高精度数值方法直接求解轴对称可压缩Navier-Stokes方程, 数值模拟了完全膨胀射流马赫数为1.10和1.15的圆形声速喷管欠膨胀超声速冷射流, 得到了A1和A2两种轴对称模态啸声. 通过傅里叶模态分解、本征模态分解和动态模态分解, 分析了射流时序压力场和速度场, 研究了啸声关联拟序流动结构的空间演化, 精确定位了轴对称模态啸声的声源位置. 研究表明: 啸声关联拟序流动结构存在饱和态区域, 啸声声波是在其饱和态区域产生并向外传播; 在本文所涉及的射流马赫数范围内, A1和A2两种轴对称模态啸声的有效声源位置分别是在第4和第3个激波栅格结构的尾缘.   相似文献   

7.
An experimental investigation is performed to study the effect of the finned surfaces and surfaces with vortex generators on the local heat transfer coefficient between impinging circular air jet and flat plate. Reynolds number is varied between 7000 and 30,000 based on the nozzle exit condition and jet to plate spacing between 0.5 and 6 nozzle diameters. Thermal infrared imaging technique is used for the measurement of local temperature distribution on the flat plate. Fins used are in the form of cubes of 2 mm size spaced at a pitch of 5 mm on the target plate and hexagonal prism of side 2.04 mm and height of 2 mm spaced at a pitch of 7.5 mm. Vortex generators in the form of a equilateral triangle of side 4 mm are used. Effect of number of rows of vortex generators, radius of a row, number of vortex generators in a row and inclination angle (i.e., the angle between the plane of the target plate and the plane of the vortex generators) on Nusselt number is studied. It is observed that the heat transfer coefficient between the impinging jet and the target plate is sensitive to the shape of the fin. The increase in the heat transfer coefficient up to 77% depending on the shape of the fin, nozzle plate spacing and the Reynolds number is observed. The augmentation in the heat transfer for the surfaces vortex generators are higher than that of the finned surfaces. The heat transfer augmentation in case of vortex generator is as high as 110% for a single row of six vortex generators at a radius of 1 nozzle diameter as compared to the smooth surface at a given nozzle plate spacing of 1 nozzle diameter and a Reynolds number of 25,000 at extreme radial location.  相似文献   

8.
Problems of origination and evolution of streamwise vortex structures in an initial region of the shear layer of a supersonic jet are discussed. Streamwise vortices are generated with the use of artificial microroughnesses on the internal surface of polished nozzles. Results of Pitot pressure distributions measured in a supersonic nonisobaric jet both in the radial and azimuthal directions are presented. Streamline curvature in the initial region of supersonic nonisobaric jets has a significant effect on evolution of streamwise vortex structures. Azimuthal heterogeneity corresponding to streamwise vortices in the shear layer is analyzed with the use of both the Fourier analysis and wavelet analysis. PACS 47.40.Ki, 47.20.Ft, 02.30.Nw  相似文献   

9.
运用时间分辨粒子成像测速系统(time-resolved particle image velocimetry, TR-PIV)对近距离下射流冲击平板时的流场进行了直接测量, 通过对两个正交的平面流场开展测量, 揭示了冲击距离和雷诺数对射流间隙内三维流动特征及涡系结构演化规律的影响. 结果表明: 射流间隙存在三种典型的涡系结构, 分别为双涡环模式、单涡环模式和卷吸模式, 但在大流量湍流状态下, 射流可能会冲破涡环, 形成随机的高速出流, 各流动模式的出现主要与射流流态及壁面约束作用有关. 运用涡量分析对三种典型涡系结构的能量传递和损失特性进行了比较. 结果表明: 近距离冲击时, 射流的能量通过涡环模式向外传递. 在双涡环模式下, 两个涡环的旋向相反, 端面的约束作用使得两个涡环都被严格约束在射流棒端面之内, 且一次涡环强度显著大于二次涡环强度. 最后, 运用本征正交分解方法对射流间隙内的流动模态及其能量分布进行了分析. 单涡和双涡模式前十阶模态分析结果表明: 能量脉动在较低阶时即以配对的模式出现, 这表明一次涡环与二次涡环均具有良好的对称性, 同时在双涡模式中, 一次涡环是占主导作用的大尺度流动结构. 卷吸模式的前三阶模态分析表明: 射流的能量集中在射流上游, 能量随紊动扩散急剧衰减.  相似文献   

10.
近距离下射流冲击平板PIV实验研究   总被引:2,自引:1,他引:1  
运用时间分辨粒子成像测速系统(time-resolved particle image velocimetry, TR-PIV)对近距离下射流冲击平板时的流场进行了直接测量, 通过对两个正交的平面流场开展测量, 揭示了冲击距离和雷诺数对射流间隙内三维流动特征及涡系结构演化规律的影响. 结果表明: 射流间隙存在三种典型的涡系结构, 分别为双涡环模式、单涡环模式和卷吸模式, 但在大流量湍流状态下, 射流可能会冲破涡环, 形成随机的高速出流, 各流动模式的出现主要与射流流态及壁面约束作用有关. 运用涡量分析对三种典型涡系结构的能量传递和损失特性进行了比较. 结果表明: 近距离冲击时, 射流的能量通过涡环模式向外传递. 在双涡环模式下, 两个涡环的旋向相反, 端面的约束作用使得两个涡环都被严格约束在射流棒端面之内, 且一次涡环强度显著大于二次涡环强度. 最后, 运用本征正交分解方法对射流间隙内的流动模态及其能量分布进行了分析. 单涡和双涡模式前十阶模态分析结果表明: 能量脉动在较低阶时即以配对的模式出现, 这表明一次涡环与二次涡环均具有良好的对称性, 同时在双涡模式中, 一次涡环是占主导作用的大尺度流动结构. 卷吸模式的前三阶模态分析表明: 射流的能量集中在射流上游, 能量随紊动扩散急剧衰减.   相似文献   

11.
This article experimentally investigates the self-excited impinging planar jet flow, specifically the development and propagation of large-scale coherent flow structures convecting between the nozzle lip and the downstream impingement surface. The investigation uses phase-locked particle image velocimetry measurements and a new structure-tracking scheme to measure convection velocity and characterize the impingement mechanism near the plate, in order to develop a new feedback model that can be used to predict the oscillation frequency as a function of flow velocity ( $U_o$ ), impingement distance ( $x_o$ ) and nozzle thickness ( $h$ ). The resulting model prediction shows a good agreement with experimental tone frequency data.  相似文献   

12.
超音速冲击射流离散频率噪声的屏蔽抑制方法   总被引:1,自引:0,他引:1  
根据导致超音速冲击射流离散频率噪声的反馈机理,提出了一种能够有效地破坏反馈环的形成,从而抑制超音速冲击射流离散频率噪声的喷嘴屏蔽方法。这种方法是通过阻隔反馈波使其不能到达喷嘴唇口从而破坏反馈环、同时屏蔽罩不与射流接触来实现降噪的目的的。本文介绍了这种方法的基本思想并提出了屏蔽罩的设计要点。实验结果表明,对于合适的屏蔽罩的参数,降噪效果达5分贝以上。应用LDV方法对超声速射流轴线速度进行了测量和比较,发现应用屏蔽降噪方法以后射流轴线速度显著增加,核心区长度增加50%左右。分析表明这种降噪方法对射流冲击障碍物的推力和除尘除水效率的提高有帮助。  相似文献   

13.
A bounded vortex flow consists of an axisymmetric vortex that is confined top and bottom between two plates (the “confinement plate” and “impingement plate”, respectively) and surrounded laterally by a swirling annular slot jet. The bottom of the vortex terminates on the boundary layer along the impingement plate and the top of the vortex is drawn into a suction port positioned at the center of the confinement plate. The circumferential flow within the annular jet is important for supplying circulation to the central wall-normal vortex. This flow field is proposed as a method for mitigation of dust build-up on a surface, where the vortex–jet combination supplements the more traditional vacuum port by enhancing the surface shear stress and related particle transport rate. The paper reports on a computational study of the velocity field and particle transport by a bounded vortex flow. Fluid flow computations are performed using a finite-volume approach for an incompressible fluid and particle transport is simulated using a discrete-element method. Computations are performed for different values of two dimensionless parameters – the ratio of the plate separation distance and the average radial location of the jet inlet (the dimensionless confinement height) and the ratio of flow rate withdrawn at the suction outlet and that injected by the jet (the flow rate ratio). For small values of the flow rate ratio, the impinging jet streamlines pass down to the boundary layer along the bottom surface and then travel up the vortex core. By contrast, for large values of flow rate ratio, the annular jet is quickly entrained into the suction outlet and no wall-normal vortex is formed. Particles are observed to roll along the impingement surface in a direction determined by the fluid shear stress lines. Particles roll outward when they lie beyond a separatrix curve of the surface shear stress lines, where particles within this separatrix curve roll inward, piling up at the center of the flow field. A toroidal vortex ring forms for the small confinement height case with flow rate ratio equal to unity, which yields double separatrix curves in the shear stress lines. The inward rolling particles intermittently lift up due to collision forces and burst away from the impingement surface, eventually to become entrained into the flow out the suction port or resettling back onto the impingement surface.  相似文献   

14.
The present study addresses experimental results for investigating the details of the near field flow characteristics produced in an under-expanded, dual, coaxial, swirling jet. The under-expanded swirling jet is discharged from a sonic inner nozzle. An outer annular nozzle produces co- and counter-swirling streams relative to the inner primary swirling jet. The interaction between both the outer annular swirling stream and inner under-expanded swirling jet is quantified by impact and static pressure measurements, and visualized by using the shadowgraph method. Experiments are performed for several different pressure ratios. The results show that the outer secondary co-swirling jet significantly changes the structure of the inner under-expanded swirling jet, such as the shock structures and the recirculation region generated at the jet axis. The effect of the outer secondary stream on the major structures of the inner primary swirling jet is strongly dependent on the pressure ratio of the inner swirling jet, regardless of the swirl direction of the outer stream.Received: 17 May 2004, Accepted: 27 September 2004, Published online: 26 November 2004[/PUBLISHED]H.D. Kim: Correspondence to  相似文献   

15.
S. I. Kim  S. O. Park 《Shock Waves》2005,14(4):259-272
Oscillatory flows of a choked underexpanded supersonic impinging jet issuing from a convergent nozzle have been computed using the axisymmetric unsteady Navier--Stokes system. This paper focuses on the oscillatory flow features associated with the variation of the nozzle-to-plate distance and nozzle pressure ratio. Frequencies of the surface pressure oscillation and flow structural changes from computational results have been analyzed. Staging behavior of the oscillation frequency has been observed for both cases of nozzle-to-plate distance variation and pressure ratio variation. However, the staging behavior for each case exhibits different features. These two distinct staging behaviors of the oscillation frequency are found to correlate well if the frequency and the distance are normalized by the length of the shock cell. It is further found that the staging behavior is strongly correlated with the change of the pressure wave pattern in the jet shear layer, but not with the shock cell structure. Communicated by K. Takayama PACS 02.60.Cb; 47.40.−x; 47.40.Nm; 47.35.+I; 47.15.−x  相似文献   

16.
Measurements in the vicinity of a stagnation point   总被引:1,自引:0,他引:1  
This paper presents measurements of a plane jet impinging onto a normal flat plate placed up to five jet widths from the jet outlet. The small spacing ensured that the stagnation streamline remained in the potential core of the jet. The plate shear stress distribution compared well to that from an analytical solution for the laminar development of the plate boundary layer whose external velocity was determined from the measured pressure. By comparing the shear stress measured under the present low level of free stream turbulence (0.35%) at the jet exit with that of Tu and Wood [Exp. Thermal Fluid Sci. 13 (1996) 364–373] made at about 4%, it is concluded that the turbulence level at the nozzle exit has only a second-order influence on the surface shear stress around the stagnation point. Some spanwise non-uniformity was observed in the plate shear stress, but this was confined largely to the transition region. The mean velocity, Reynolds stresses, and fluctuating pressure were measured along the stagnation streamline using a fast-response pressure probe. A significant increase in the streamwise normal stress and the mean square of the pressure fluctuations occurred before they were eventually attenuated by the plate. This increase occurred in the region where the streamwise velocity was decreasing close to the plate causing extra energy production through the normal stresses. Spectra of the velocity and pressure fluctuations showed that the increase in level was mainly due to the low frequency motion, whereas the subsequent decrease occurred at higher frequencies.  相似文献   

17.
The self-excited oscillation of a large aspect ratio planar jet impinging on a flat plate is investigated experimentally at a single transonic jet velocity to clarify the effect of varying the jet thickness on pattern of jet oscillation and frequency of resulting acoustic tone. The study has been performed for a series of jet thicknesses, 1 mm to 4 mm, each of which is tested for the complete range of plate position, i.e. impingement distance, over which acoustic tones are generated. The results reveal that the jet oscillation is controlled by a fluid-dynamic mechanism for small impingement distances, where the hydrodynamic flow instability controls the jet oscillation without any coupling with local acoustic resonances. At larger impingement distances, a fluid-resonant mechanism becomes dominant, in which one of the various hydrodynamic modes of the jet couples with one of the resonant acoustic modes occurring between the jet nozzle and the impingement plate. Within the fluid-resonant regime, the acoustic tones are found to be controlled by the impingement distance, which is the length scale of the acoustic mode, with the jet thickness having only minor effects on the tone frequency. Flow visualization images of the jet oscillation pattern at a constant impingement distance show that the oscillation occurs at the same hydrodynamic mode of the jet despite a four-fold increase in its thickness. Finally, a feedback model has been developed to predict the frequency of acoustic tones, and has been found to yield reasonable predictions over the tested range of impingement distance and nozzle thickness.  相似文献   

18.
气枪喷嘴高速射流的除水效率研究   总被引:2,自引:0,他引:2  
为揭示喷嘴除水的机理并进而对气枪喷嘴进行改进和优化设计,本文提出了利用图像分析处理对小尺度气枪喷嘴高速冲击乘风破浪的除水效率的研究方法。该方法将有效除水面积作为衡量喷嘴除水效率的标准,从面实现了对喷嘴整体除水效率的定量测量,并利用该方法对影响气枪喷嘴除水效率的各种因素(一次侧压力,喷嘴到平板的距离和射流攻角)进行了研究,并将实验结果与用热线风速仪及总压探头测量的结果进行了比较,得到冲击射流在平板水平速度分量是蚊蝇 嘴除尘除水效率的决定性因素等结论。  相似文献   

19.
20.
Compressible subsonic turbulent starting jet with a relatively large Reynolds number of significant practical importance is investigated using large eddy simulation (LES), starting from a smooth contraction nozzle. The computational domain of truncated conical shape is determined through the comparison of the time-averaged numerical solution with the particle imaging velocimetry measurements for the steady jet. It is shown that the starting jet consists of a leading vortex ring followed by a quasi-steady jet, and the instantaneous velocity field exhibits contraction and expansion zones, corresponding to the high pressure (HP) and low pressure (LP) regions formed by the convecting vortex rings, and are related to the Kelvin-Helmholtz instability. The thin boundary layer inside the smooth contraction nozzle evolves into a shear layer at the nozzle exit and develops with the downstream penetration of the jet. Using λ 2 criterion, the formation and evolution of the vortical structures are temporally visualized, illustrating distortion of vortex rings into lobed shapes prior to break-down. Rib-shape streamwise vortex filaments exist in the braid region between a pair of consecutive vortex rings due to secondary instabilities. Finally, formation and dynamics of hairpin vortices in the shear layer is identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号