首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
An implicit finite difference model in the σ co‐ordinate system is developed for non‐hydrostatic, two‐dimensional vertical plane free‐surface flows. To accurately simulate interaction of free‐surface flows with uneven bottoms, the unsteady Navier–Stokes equations and the free‐surface boundary condition are solved simultaneously in a regular transformed σ domain using a fully implicit method in two steps. First, the vertical velocity and pressure are expressed as functions of horizontal velocity. Second, substituting these relationship into the horizontal momentum equation provides a block tri‐diagonal matrix system with the unknown of horizontal velocity, which can be solved by a direct matrix solver without iteration. A new treatment of non‐hydrostatic pressure condition at the top‐layer cell is developed and found to be important for resolving the phase of wave propagation. Additional terms introduced by the σ co‐ordinate transformation are discretized appropriately in order to obtain accurate and stable numerical results. The developed model has been validated by several tests involving free‐surface flows with strong vertical accelerations and non‐linear waves interacting with uneven bottoms. Comparisons among numerical results, analytical solutions and experimental data show the capability of the model to simulate free‐surface flow problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
Details are given of the development of a two‐dimensional vertical numerical model for simulating unsteady free‐surface flows, using a non‐hydrostatic pressure distribution. In this model, the Reynolds equations and the kinematic free‐surface boundary condition are solved simultaneously, so that the water surface elevation can be integrated into the solution and solved for, together with the velocity and pressure fields. An efficient numerical algorithm has been developed, deploying implicit parameters similar to those used in the Crank–Nicholson method, and generating a block tri‐diagonal algebraic system of equations. The model has been applied to simulate a range of unsteady flow problems involving relatively strong vertical accelerations. The results show that the numerical algorithm described is able to produce accurate predictions and is also easy to apply. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
An implicit finite volume model in sigma coordinate system is developed to simulate two‐dimensional (2D) vertical free surface flows, deploying a non‐hydrostatic pressure distribution. The algorithm is based on a projection method which solves the complete 2D Navier–Stokes equations in two steps. First the pressure term in the momentum equations is excluded and the resultant advection–diffusion equations are solved. In the second step the continuity and the momentum equation with only the pressure terms are solved to give a block tri‐diagonal system of equation with pressure as the unknown. This system can be solved by a direct matrix solver without iteration. A new implicit treatment of non‐hydrostatic pressure, similar to the lower layers is applied to the top layer which makes the model free of any hydrostatic pressure assumption all through the water column. This treatment enables the model to evaluate both free surface elevation and wave celerity more accurately. A series of numerical tests including free‐surface flows with significant vertical accelerations and nonlinear behaviour in shoaling zone are performed. Comparison between numerical results, analytical solutions and experimental data demonstrates a satisfactory performance. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
The Euler equations are solved for non‐hydrostatic atmospheric flow problems in two dimensions using a high‐resolution Godunov‐type scheme. The Riemann problem is solved using a flux‐based wave decomposition suggested by LeVeque. This paper describes in detail, the design and implementation of the Riemann solver used for computing the Godunov fluxes. The methodology is then validated against benchmark cases for non‐hydrostatic atmospheric flows. Comparisons are made with solutions obtained from the National Center for Atmospheric Research's state‐of‐the‐art numerical model. The method shows promise in simulating non‐hydrostatic flows, which are characterized by steep gradients on the meso‐, micro‐ and urban‐scales. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
A three‐dimensional numerical model is developed to analyze free surface flows and water impact problems. The flow of an incompressible viscous fluid is solved using the unsteady Navier–Stokes equations. Pseudo‐time derivatives are introduced into the equations to improve computational efficiency. The interface between the two phases is tracked using a volume‐of‐fluid interface tracking algorithm developed in a generalized curvilinear coordinate system. The accuracy of the volume‐of‐fluid method is first evaluated by the multiple numerical benchmark tests, including two‐dimensional and three‐dimensional deformation cases on curvilinear grids. The performance and capability of the numerical model for water impact problems are demonstrated by simulations of water entries of the free‐falling hemisphere and cone, based on comparisons of water impact loadings, velocities, and penetrations of the body with experimental data. For further validation, computations of the dam‐break flows are presented, based on an analysis of the wave front propagation, water level, and the dynamic pressure impact of the waves on the downstream walls, on a specific container, and on a tall structure. Extensive comparisons between the obtained solutions, the experimental data, and the results of other numerical simulations in the literature are presented and show a good agreement. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A three‐dimensional numerical model is developed for incompressible free surface flows. The model is based on the unsteady Reynolds‐averaged Navier–Stokes equations with a non‐hydrostatic pressure distribution being incorporated in the model. The governing equations are solved in the conventional sigma co‐ordinate system, with a semi‐implicit time discretization. A fractional step method is used to enable the pressure to be decomposed into its hydrostatic and hydrodynamic components. At every time step one five‐diagonal system of equations is solved to compute the water elevations and then the hydrodynamic pressure is determined from a pressure Poisson equation. The model is applied to three examples to simulate unsteady free surface flows where non‐hydrostatic pressures have a considerable effect on the velocity field. Emphasis is focused on applying the model to wave problems. Two of the examples are about modelling small amplitude waves where the hydrostatic approximation and long wave theory are not valid. The other example is the wind‐induced circulation in a closed basin. The numerical solutions are compared with the available analytical solutions for small amplitude wave theory and very good agreement is obtained. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we present a numerical scheme for solving 2‐phase or free‐surface flows. Here, the interface/free surface is modeled using the level‐set formulation, and the underlying mesh is adapted at each iteration of the flow solver. This adaptation allows us to obtain a precise approximation for the interface/free‐surface location. In addition, it enables us to solve the time‐discretized fluid equation only in the fluid domain in the case of free‐surface problems. Fluids here are considered incompressible. Therefore, their motion is described by the incompressible Navier‐Stokes equation, which is temporally discretized using the method of characteristics and is solved at each time iteration by a first‐order Lagrange‐Galerkin method. The level‐set function representing the interface/free surface satisfies an advection equation that is also solved using the method of characteristics. The algorithm is completed by some intermediate steps like the construction of a convenient initial level‐set function (redistancing) as well as the construction of a convenient flow for the level‐set advection equation. Numerical results are presented for both bifluid and free‐surface problems.  相似文献   

8.
A depth‐averaged two‐dimensional model has been developed in the curvilinear co‐ordinate system for free‐surface flow problems. The non‐linear convective terms of the momentum equations are discretized based on the explicit–finite–analytic method with second‐order accuracy in space and first‐order accuracy in time. The other terms of the momentum equations, as well as the mass conservation equation, are discretized by the finite difference method. The discretized governing equations are solved in turn, and iteration in each time step is adopted to guarantee the numerical convergence. The new model has been applied to various flow situations, even for the cases with the presence of sub‐critical and supercritical flows simultaneously or sequentially. Comparisons between the numerical results and the experimental data show that the proposed model is robust with satisfactory accuracy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
In the present study, the preconditioned incompressible Navier‐Stokes equations with the artificial compressibility method formulated in the generalized curvilinear coordinates are numerically solved by using a high‐order compact finite‐difference scheme for accurately and efficiently computing the incompressible flows in a wide range of Reynolds numbers. A fourth‐order compact finite‐difference scheme is utilized to accurately discretize the spatial derivative terms of the governing equations, and the time integration is carried out based on the dual time‐stepping method. The capability of the proposed solution methodology for the computations of the steady and unsteady incompressible viscous flows from very low to high Reynolds numbers is investigated through the simulation of different 2‐dimensional benchmark problems, and the results obtained are compared with the existing analytical, numerical, and experimental data. A sensitivity analysis is also performed to evaluate the effects of the size of the computational domain and other numerical parameters on the accuracy and performance of the solution algorithm. The present solution procedure is also extended to 3 dimensions and applied for computing the incompressible flow over a sphere. Indications are that the application of the preconditioning in the solution algorithm together with the high‐order discretization method in the generalized curvilinear coordinates provides an accurate and robust solution method for simulating the incompressible flows over practical geometries in a wide range of Reynolds numbers including the creeping flows.  相似文献   

10.
This work is concerned with the numerical simulation of two‐dimensional viscoelastic free surface flows of a second‐order fluid. The governing equations are solved by a finite difference technique based on the marker‐and‐cell philosophy. A staggered grid is employed and marker particles are used to represent the fluid free surface. Full details for the approximation of the free surface stress conditions are given. The resultant code is validated and convergence is demonstrated. Numerical simulations of the extrudate swell and flow through a planar 4:1 contraction for various values of the Deborah number are presented. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, the domain‐free discretization method (DFD) is extended to simulate the three‐dimensional compressible inviscid flows governed by Euler equations. The discretization strategy of DFD is that the discrete form of governing equations at an interior point may involve some points outside the solution domain. The functional values at the exterior‐dependent points are updated at each time step by extrapolation along the wall normal direction in conjunction with the wall boundary conditions and the simplified momentum equation in the vicinity of the wall. Spatial discretization is achieved with the help of the finite element Galerkin approximation. The concept of ‘osculating plane’ is adopted, with which the local DFD can be easily implemented for the three‐dimensional case. Geometry‐adaptive tetrahedral mesh is employed for three‐dimensional calculations. Finally, we validate the DFD method for three‐dimensional compressible inviscid flow simulations by computing transonic flows over the ONERA M6 wing. Comparison with the reference experimental data and numerical results on boundary‐conforming grid was displayed and the results show that the present DFD results compare very well with the reference data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
We present a simple and cost‐effective curvature calculation approach for simulations of interfacial flows on structured and unstructured grids. The interface is defined using volume fractions, and the interface curvature is obtained as a function of the gradients of volume fractions. The gradient computation is based on a recently proposed gradient recovery method that mimicks the least squares approach without the need to solve a system of equations and is quite easy to implement on arbitrary polygonal meshes. The resulting interface curvature is used in a continuum surface force formulation within the framework of a well‐balanced finite‐volume algorithm to simulate multiphase flows dominated by surface tension. We show that the proposed curvature calculation is at least as accurate as some of the existing approaches on unstructured meshes while being straightforward to implement on any mesh topology. Numerical investigations also show that spurious currents in stationary problems that are dependent on the curvature calculation methodology are also acceptably low using the proposed approach. Studies on capillary waves and rising bubbles in viscous flows lend credence to the ability of the proposed method as an inexpensive, robust, and reasonably accurate approach for curvature calculation and numerical simulation of multiphase flows.  相似文献   

13.
An implicit method is developed for solving the complete three‐dimensional (3D) Navier–Stokes equations. The algorithm is based upon a staggered finite difference Crank‐Nicholson scheme on a Cartesian grid. A new top‐layer pressure treatment and a partial cell bottom treatment are introduced so that the 3D model is fully non‐hydrostatic and is free of any hydrostatic assumption. A domain decomposition method is used to segregate the resulting 3D matrix system into a series of two‐dimensional vertical plane problems, for each of which a block tri‐diagonal system can be directly solved for the unknown horizontal velocity. Numerical tests including linear standing waves, nonlinear sloshing motions, and progressive wave interactions with uneven bottoms are performed. It is found that the model is capable to simulate accurately a range of free‐surface flow problems using a very small number of vertical layers (e.g. two–four layers). The developed model is second‐order accuracy in time and space and is unconditionally stable; and it can be effectively used to model 3D surface wave motions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
A hybrid phase field multiple relaxation time lattice Boltzmann method (LBM) is presented in this paper for simulation of multiphase flows with large density contrast. In the present method, the flow field is solved by a lattice Boltzmann equation. Concurrently, the interface of two fluids is captured by solving the macroscopic Cahn‐Hilliard equation using the upwind scheme. To be specific, for simulation of the flow field, an lattice Boltzmann equation (LBE) model developed in Shao et al. (Physical Review E, 89 (2014), 033309) for consideration of density contrast in the momentum equation is used. Moreover, in the present work, the multiple relaxation time collision operator is applied to this LBE to enable simulation of problems with large viscosity contrast or high Reynolds number. For the interface capturing, instead of solving another set of LBE as in many phase field LBMs, the macroscopic Cahn‐Hilliard equation is directly solved by using a weighted essentially non‐oscillatory scheme. In this way, the present hybrid phase field LBM shares full advantages of the phase field LBM while enhancing numerical stability. The ability of the present method to simulate multiphase flow problems with large density contrast is demonstrated by several numerical examples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
A three‐dimensional numerical model has been developed to simulate stratified flows with free surfaces. The model is based on the Reynolds‐averaged Navier–Stokes (RANS) equations with variable fluid density. The equations are solved in a transformed σ‐coordinate system with the use of operator‐splitting method (Int. J. Numer. Meth. Fluids 2002; 38 :1045–1068). The numerical model is validated against the one‐dimensional diffusion problem and the two‐dimensional density‐gradient flow. Excellent agreements are obtained between numerical results and analytical solutions. The model is then used to study transport phenomena of dumped sediments into a water body, which has been modelled as a strongly stratified flow. For the two‐dimensional problem, the numerical results compare well with experimental data in terms of mean particle falling velocity and spreading rate of the sediment cloud for both coarse and medium‐size sediments. The model is also employed to study the dumping of sediments in a three‐dimensional environment with the presence of free surface. It is found that during the descending process an annulus‐like cloud is formed for fine sediments whereas a plate‐like cloud for medium‐size sediments. The model is proven to be a good tool to simulate strongly stratified free surface flows. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
We describe a semi‐implicit volume‐of‐fluid free‐surface‐modelling methodology for flow problems involving violent free‐surface motion. For efficient computation, a hybrid‐unstructured edge‐based vertex‐centred finite volume discretisation is employed, while the solution methodology is entirely matrix free. Pressures are solved using a matrix‐free preconditioned generalised minimum residual algorithm and explicit time‐stepping is employed for the momentum and interface‐tracking equations. The high resolution artificial compressive (HiRAC) volume‐of‐fluid method is used for accurate capturing of the free surface in violent flow regimes while allowing natural applicability to hybrid‐unstructured meshes. The code is parallelised for solution on distributed‐memory architectures and evaluated against 2D and 3D benchmark problems. Good parallel scaling is demonstrated, with almost linear speed‐up down to 6000 cells per core. Finally, the code is applied to an industrial‐type problem involving resonant excitation of a fuel tank, and a comparison with experimental results is made in this violent sloshing regime. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A numerical method for solving three‐dimensional free surface flows is presented. The technique is an extension of the GENSMAC code for calculating free surface flows in two dimensions. As in GENSMAC, the full Navier–Stokes equations are solved by a finite difference method; the fluid surface is represented by a piecewise linear surface composed of quadrilaterals and triangles containing marker particles on their vertices; the stress conditions on the free surface are accurately imposed; the conjugate gradient method is employed for solving the discrete Poisson equation arising from a velocity update; and an automatic time step routine is used for calculating the time step at every cycle. A program implementing these features has been interfaced with a solid modelling routine defining the flow domain. A user‐friendly input data file is employed to allow almost any arbitrary three‐dimensional shape to be described. The visualization of the results is performed using computer graphic structures such as phong shade, flat and parallel surfaces. Results demonstrating the applicability of this new technique for solving complex free surface flows, such as cavity filling and jet buckling, are presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
A simple methodology for a high‐resolution scheme to be applied to compressible multicomponent flows with shock waves is investigated. The method is intended for use with direct numerical simulation or large eddy simulation of compressible multicomponent flows. The method dynamically adds non‐linear artificial diffusivity locally in space to capture different types of discontinuities such as a shock wave, contact surface or material interface while a high‐order compact differencing scheme resolves a broad range of scales in flows. The method is successfully applied to several one‐dimensional and two‐dimensional compressible multicomponent flow problems with shock waves. The results are in good agreement with experiments and earlier computations qualitatively and quantitatively. The method captures unsteady shock and material discontinuities without significant spurious oscillations if initial start‐up errors are properly avoided. Comparisons between the present numerical scheme and high‐order weighted essentially non‐oscillatory (WENO) schemes illustrate the advantage of the present method for resolving a broad range of scales of turbulence while capturing shock waves and material interfaces. Also the present method is expected to require less computational cost than popular high‐order upwind‐biased schemes such as WENO schemes. The mass conservation for each species is satisfied due to the strong conservation form of governing equations employed in the method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we present a two‐dimensional computational framework for the simulation of fluid‐structure interaction problems involving incompressible flexible solids and multiphase flows, further extending the application range of classical immersed computational approaches to the context of hydrodynamics. The proposed method aims to overcome shortcomings such as the restriction of having to deal with similar density ratios among different phases or the restriction to solve single‐phase flows. First, a variation of classical immersed techniques, pioneered with the immersed boundary method (IBM), is presented by rearranging the governing equations, which define the behaviour of the multiple physics involved. The formulation is compatible with the “one‐fluid” formulation for two‐phase flows and can deal with large density ratios with the help of an anisotropic Poisson solver. Second, immersed deformable structures and fluid phases are modelled in an identical manner except for the computation of the deviatoric stresses. The numerical technique followed in this paper builds upon the immersed structural potential method developed by the authors, by adding a level set–based method for the capturing of the fluid‐fluid interfaces and an interface Lagrangian‐based meshless technique for the tracking of the fluid‐structure interface. The spatial discretisation is based on the standard marker‐and‐cell method used in conjunction with a fractional step approach for the pressure/velocity decoupling, a second‐order time integrator, and a fixed‐point iterative scheme. The paper presents a wide d range of two‐dimensional applications involving multiphase flows interacting with immersed deformable solids, including benchmarking against both experimental and alternative numerical schemes.  相似文献   

20.
A coupling method for numerical calculations of steady free‐surface flows around a body is presented. The fluid domain in the neighbourhood of the hull is divided into two overlapping zones. Viscous effects are taken in account near the hull using Reynolds‐averaged Navier–Stokes equations (RANSE), whereas potential flow provides the flow away from the hull. In the internal domain, RANSE are solved by a fully coupled velocity, pressure and free‐surface elevation method. In the external domain, potential‐flow theory with linearized free‐surface condition is used to provide boundary conditions to the RANSE solver. The Fourier–Kochin method based on the Fourier–Kochin formulation, which defines the velocity field in a potential‐flow region in terms of the velocity distribution at a boundary surface, is used for that purpose. Moreover, the free‐surface Green function satisfying this linearized free‐surface condition is used. Calculations have been successfully performed for steady ship‐waves past a serie 60 and then have demonstrated abilities of the present coupling algorithm. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号