首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel method for preconcentration is described for chromium speciation at microgram per liter to sub-microgram per liter levels. It is based on selective complex formation of both Cr(VI) and Cr(III) followed by dispersive liquid–liquid microextraction and determination by microsample introduction-flame atomic absorption spectrometry. Effects influencing complex formation and extraction (such as pH, temperature, time, solvent, salinity and the amount of chelating agent) have been optimized. Enrichment factors up to 275 and 262 were obtained for Cr(VI) and total Cr, respectively. The calibration graph is linear from 0.3 to 20 µg L?1, and detection limits are 0.07 and 0.08 µg L?1 for Cr(VI) and total Cr, respectively. Relative standard deviations (RSDs) were obtained to be 2.0% for Cr(VI) and 2.6% for total Cr (n?=?7).  相似文献   

2.
A novel, automatic on-line sequential injection dispersive liquid-liquid microextraction (SI-DLLME) method, based on 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF(6)]) ionic liquid as an extractant solvent was developed and demonstrated for trace thallium determination by flame atomic absorption spectrometry. The ionic liquid was on-line fully dispersed into the aqueous solution in a continuous flow format while the TlBr(4)(-) complex was easily migrated into the fine droplets of the extractant due to the huge contact area of them with the aqueous phase. Furthermore, the extractant was simply retained onto the surface of polyurethane foam packed into a microcolumn. No specific conditions like low temperature are required for extractant isolation. All analytical parameters of the proposed method were investigated and optimized. For 15 mL of sample solution, an enhancement factor of 290, a detection limit of 0.86 μg L(-1) and a precision (RSD) of 2.7% at 20.0 μg L(-1) Tl(I) concentration level, was obtained. The developed method was evaluated by analyzing certified reference materials while good recoveries from environmental and biological samples proved that present method was competitive in practical applications.  相似文献   

3.
The method relies on selective complexation of As(III) with a suitable chelating agent followed by dispersive liquid–liquid microextraction (DLLME) method. Flame atomic absorption spectrometry (FAAS) equipped with microsample introduction system was utilised for determination of As(III). 1-Undecanol and acetone were used as extraction solvent and disperser solvent respectively. Some effective parameters on complex formation and extraction have been optimised. Under the optimum conditions, the enrichment factor of 108 for As(III) was obtained from 9.8?mL of water samples. The calibration graph was linear in the range of 2–15?µg?L?1 with detection limits of 0.60?µg?L?1 for As(III). The relative standard deviation (R.S.D.) for ten replicate measurements of 5.00?µ?gL?1 of As(III) was 6.2%. Operation simplicity and high enrichment factors are the main advantages of DLLME for the determination of As(III) without necessity for hydride generation in water samples.  相似文献   

4.
5.
In the present study, an environment-friendly sample preparation method termed ionic liquid-based dispersive liquid–liquid microextraction combined with flame atomic absorption spectrometry has been developed for the determination of Pb(II) ion in water samples prior to flame atomic absorption spectrometry determination. In this method, ionic liquid was used as an extraction solvent instead of the organic solvent used in the conventional dispersive liquid–liquid microextraction (DLLME) assay, and there is no need for a chelating agent. Several variables that may affect extraction efficiencies, including pH, the volume of ionic liquid, the type and volume of disperser solvent, salt addition, and the time for centrifugation and extraction were studied and optimised. Under the optimised conditions, the calibration curve exhibited linearity over the range of 20.0–1000.0 μg L?1. The enrichment factor and the limit of detection based on 3Sb/m were 35.0 and 5.9 μg L?1, respectively. Seven replicate determination of a solution containing of 100.0 μg L?1 Pb(II) ions gave a relative standard deviation of ±2.1%. Finally, the feasibility of the proposed method for Pb(II) determination was assessed by the analysis of certi?ed reference material and various water samples and the satisfactory results were obtained.  相似文献   

6.
7.
A simple, rapid and efficient method has been developed for the extraction, preconcentration and determination of copper, lead and zinc ions in water samples by air-assisted liquid–liquid microextraction coupled with graphite furnace atomic absorption spectrometry (GFAAS). In the proposed method, much less volume of an organic solvent (in the order of some µL) was used as the extraction solvent in the absence of disperser solvent. Fine organic droplets were formed by sucking and injecting of the mixture of aqueous sample solution and extraction solvent with a syringe for several times in a conical test tube. After extraction, phase separation was achieved by centrifugation and the enriched analytes in the sedimented phase were determined by GFAAS. Several variables potentially affecting the extraction efficiency were investigated and optimized. Calibration graphs were linear in the concentration range of 45.0–1100 ng L?1. Detection limits were in the range of 18.0–26.0 ng L?1. The accuracy of the developed procedure was checked by analyzing NRCC-SLRS4 Riverine water as a certified reference material. Finally, the proposed method was successfully applied to determine the selected heavy metals in tap, surface and river water samples.  相似文献   

8.
ABSTRACT

Tandem dispersive liquid liquid microextraction coupled with micro - sampling flame atomic absorption spectrometry for rapid determination of lead2 and cadmium2 ions in environmental water samples. A simple method termed as tandem dispersive liquid–liquid microextraction coupled with micro-sampling flame atomic absorption spectrometry is used for determination of the lead(II) and cadmium(II) ions in different environmental water samples. According to the proposed method, the target analytes are extracted from an aqueous sample solution (10 mL) into a micro-volume of an organic solvent, and then they are selectively back-extracted into an aqueous acceptor solution (150 μL) to increase the compatibility of the extractant phase with a final analyser system and provide a suitable enrichment factor. The developed method is very fast, implemented in just about 7 min, and provides a high sample clean-up. The factors influencing the extraction efficiency including the type and volume of the organic solvent, pH and volume of the acceptor solution, and number of extractions are thoroughly examined and optimised. Under the optimal experimental conditions, the developed method provides a good linearity (in the range of 0.4–300 ng mL?1 (R2 ≥ 0.994)), and low limits of detection (in the range of 0.07–0.31 ng mL?1). Finally, the method is successfully applied for the direct determination of the understudied analytes in the river, dam, and well water samples.  相似文献   

9.
Dissolved carbon dioxide flotation-assisted in-syringe dispersive liquid–liquid microextraction (DCF-IS-DLLME) followed by microsampling flame atomic absorption spectrometry was developed as a simple, inexpensive and fast method for extraction and determination of Pd(II). In the proposed approach, N,N′-bis (naphthylideneimino) diethylenetriamine (NAPdien) was utilized as a selective complexing reagent for Pd(II) ion. Several influential factors on the extraction efficiency including types and volumes of extraction and disperser solvents, pH of the sample solution, concentration of NAPdien and interfering ions were studied. By applying the optimal conditions, a preconcentration factor of 28.7 and limit of detection of 2.5 ng mL?1 were provided by the proposed method. Linearity was in the range of 10–400 ng mL?1 with a correlation coefficient (R 2) of 0.9968. Intra-day RSD% values for five repetitive measurements of the spiked solutions at the concentrations of 20 and 100 ng mL?1 were 5.2 and 2.4%, respectively, whereas it was obtained within the range of 3.6–18.6% for the real samples. Inter-day RSD% values of the spiked solutions were found to be 9.6 and 8.7%, respectively. The results demonstrated that except for Fe2+ and Fe3+, no remarkable interfering effect was created by the other studied ions for determination of Pd(II) so that the tolerance limits (W Ion/W Pd(II)) of the major cations and anions were in the range of 1000–10,000. Finally, DCF-IS-DLLME was successfully applied for determination of Pd(II) in different water samples and the obtained relative recoveries in the range of 94.5–105% illustrated favorable accuracies for the proposed method.  相似文献   

10.
This study was designed to determine the ultra-trace amounts of lead (Pb) and cadmium (Cd) in various cereals (rice, wheat, barley, peas, beans, corn and lentil) obtained from the markets in Kermanshah city, West Iran. An efficient microextraction method was applied to separation and preconcentration of metal ions. This method is dispersive liquid–liquid microextraction based on solidification of floating organic drop, which overcomes the most important problems of other microextraction techniques. Some effective parameters on extraction were studied and, under optimised conditions, the enhancement factors were 122 and 115 for Cd and Pb, respectively. The calibration graphs were linear in the range of 0.1–50 µg kg?1 with correlation coefficient more than 0.992. The detection limit was 0.05 µg kg?1. The values of intra-day relative standard deviations and inter-day relative standard deviations were in the range of 4.7?5.3% and 6.0?6.8%, respectively. The Pb concentrations in rice and wheat samples were considerably higher than the allowable limits set by World Health Organization. The method was successfully applied to determination of the Pb and Cd in cereals, and application of the proposed method to the analysis of two certified reference materials produced results that were in good agreement with the certified values.  相似文献   

11.
A simple and fast preconcentration/separation dispersive liquid–liquid micro extraction (DLLME) method for metal determination based on the use of extraction solvent with lower density than water has been developed. For this purpose a novel micro-volume introduction system was developed enabling the on-line injection of the organic solvent into flame atomic absorption spectrometry (FAAS). The effectiveness and efficiency of the proposed system were demonstrated for lead and copper preconcentration in environmental water samples using di-isobutyl ketone (DBIK) as extraction solvent. Under the optimum conditions the enhancement factor for lead and copper was 187 and 310 respectively. For a sample volume of 10 mL, the detection limit (3 s) and the relative standard deviation were 1.2 μg L−1 and 3.3% for lead and 0.12 μg L−1 and 2.9% for copper respectively. The developed method was evaluated by analyzing certified reference material and it was applied successfully to the analysis of environmental water samples.  相似文献   

12.
This work compares the performance of dispersive liquid–liquid method (DLLME) as a prior step for determining copper by flame atomic absorption spectrometry (FAAS), when using the ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate (C4MIm-PF6) or the IL-based surfactant 1-hexadecyl-3-butylimidazolium bromide (C16C4Im-Br) as extractant solvents. For the water-insoluble C4MIm-PF6, the most conventional DLLME mode using acetonitrile as dispersive solvent was employed. For the water-soluble C16C4Im-Br, the in situ DLLME mode with lithium bis[(trifluoromethane)sulfonyl]imide (Li-NTf2) as metathesis reagent was employed. In both approaches, some effective parameters such as volumes of extractant and dispersive solvents, concentration of complexing agent, pH of sample solution, salting-out effect and final diluting solvent to ensure compatibility with FAAS, were properly optimised. The optimum conditions for the IL-DLLME method using C4MIm-PF6 were: 100 μL of neat C4MIm-PF6, 1 mL of acetonitrile, 10 mL of water, no control of pH for environmental waters, NaCl content of 23 g L?1, diethyl dithiocarbamate (DDTC) as complexing agent at 10 mg L?1 and final dilution of the micro-droplet with acetonitrile up to 70 µL. The optimum conditions for the in situ IL-DLLME method using C16C4Im-Br were: 0.8 mL of acetonitrile, 10 mL of water containing C16C4Im-Br at 25.2 mmol L?1, final dilution step of the micro-droplet with 200 µL of acetonitrile and remaining conditions as those of C4MIm-PF6. The analytical performance of both methods was similar, being slightly better for the IL-DLLME method using C4MIm-PF6, with limits of detection (LOD) of 3.3 µg L?1 (versus 5.1 µg L?1 when using C16C4Im-Br), precision values as intraday relative standard deviation (RSD in %) lower than 8.8% (being of 10% for the C16C4Im-Br method) and an enrichment factor of 54 (being 27 when using C16C4Im-Br). The DLLME-FAAS method with C4MIm-PF6 was used in the analysis of environmental waters with successful performance, with relative recoveries of 110% and 105%, and interday precision with RSD values of 21% and 7.4% for spiked levels of 60 and 160 µg L?1, respectively. The results obtained when analysing an urban wastewater sample coming from an inter-laboratory exercise was comparable to those obtained for other 93 laboratories. The method was also valid for the determination of Cu2+ in presence of foreign ions commonly found in natural waters.  相似文献   

13.
A dispersive liquid–liquid microextraction (DLLME) method for separation/preconcentration of ultra trace amounts of Co(II) and its determination with FAAS was developed. The DLLME behavior of Co(II) using Aliquat 336-chloride as ion pairing agent was systematically investigated. The factors influencing the ion pair formation and extraction by DLLME method were optimized. Under the optimized conditions for 150 µL of extraction solvent (carbon tetrachloride), 1.5 mL disperser solvent (acetonitrile) and 5 mL of sample, the enrichment factor was 30. The detection limit was 5.6 µg L?1 and the RSD for replicate measurements of 1 mg L?1 was 1.32 %. The calibration graph using the preconcentration system for cobalt was linear from 40 to 400 µg L?1 with a correlation coefficient of 0.999. The proposed method was successfully applied for determination of cobalt in black tea, paprika and marjoram real samples.  相似文献   

14.
A new procedure for the determination of inorganic arsenic (III,V) and antimony (III,V) in water samples by dispersive liquid–liquid micro extraction separation and electrothermal atomic absorption spectrometry (ETAAS) is presented. At pH 1, As(III) and Sb(III) are complexed with ammonium pyrrolidine dithiocarbamate and extracted into the fine droplets formed when mixing carbon tetrachloride (extraction solvent), methanol (disperser solvent) and the sample solution. After extraction, the phases are separated by centrifugation, and As(III) and Sb(III) are determined in the organic phase. As(V) and Sb(V) remain in the aqueous layer. Total inorganic As and Sb are determined after the reduction of the pentavalent forms with sodium thiosulphate. As(V) and Sb(V) are calculated by difference. The detection limits are 0.01 and 0.05 µg L− 1 for As(III) and Sb(III), respectively, with an enrichment factor of 115. The relative standard deviation is in the 2.9–4.5% range. The procedure has been applied to the speciation of inorganic As and Sb in bottled, tap and sea water samples with satisfactory results.  相似文献   

15.
A solid-phase extraction coupled with dispersive liquid–liquid microextraction (DLLME) method followed by graphite furnace atomic absorption spectrometry (GFAAS) was developed for the extraction, preconcentration, and determination of ultra trace amounts of lead in water samples. Variables affecting the performance of both steps were thoroughly investigated. Under optimized conditions, 100 mL of lead solution were first concentrated using a solid phase sorbent. The extracts were collected in 1.50 mL of THF and 18 μL of carbon tetrachloride was dissolved in the collecting solvent. Then 5.0 mL pure water was injected rapidly into the mixture of THF and carbon tetrachloride for DLLME, followed by GFAAS determination of lead. The analytical figures of merit of method developed were determined. With an enrichment factor of 1,800, a linear calibration of 3–60 ng L?1 and a limit of detection of 1.0 ng L?1 were obtained. The relative standard deviation for seven replicate measurements of 30 ng L?1 of lead was 5.2 %. The relative recoveries of lead in mineral, tap, well, and river water samples at spiking level of 10 and 20 ng L?1 are in the range 94–106 %.  相似文献   

16.
17.
A rapid and selective technique has been proposed for the extraction, pre-concentration and determination of trace amounts of cobalt in water and pharmaceutical samples by syringe-to-syringe-dispersive liquid–phase microextraction (SS-DLPME) combined with flame atomic absorption spectrometry (FAAS). In the developed method, 1-nitroso-2-naphthol was used as a selective complexing agent and 1-octanol was selected as the extraction solvent. Factors such as pH of the sample solution, concentration of the complexing agent, volume of the extraction solvent, number of injections and centrifugation time affecting the extraction efficiency were screened using a Plackett–Burman design (PBD) and optimised using a Box–Behnken design (BBD). Under optimum conditions, a dynamic linear range of 2.5–650 μg L?1 with the coefficient of determination r2 = 0.997 was obtained. The resultant limit of detection (LOD) was 0.68 μg L?1, whereas the enrichment factor (EF), intraday precision and inter-day precision were 281, 1.43% and 1.93%, respectively. This method was used successfully for pre-concentration and determination of the analyte in environmental water and drug samples.  相似文献   

18.
In this study, a rapid, simple, and efficient sample preparation method based on continuous dispersive liquid–liquid microextraction has been developed for the extraction and preconcentration of aryloxyphenoxy-propionate herbicides from aqueous samples prior to their analysis by gas chromatography–flame ionization detection. In this method, two parallel glass tubes with different diameters are connected with a teflon stopcock and used as an extraction device. A mixture of disperser and extraction solvents is transferred into one side (narrow tube) of the extraction device and an aqueous phase containing the analytes is filled into the other side (wide tube). Then the stopcock is opened and the mixture of disperser and extraction solvents mixes with the aqueous phase. By this action, the extraction solvent is dispersed continuously as fine droplets into the aqueous sample and the target analytes are extracted into the fine droplets of the extraction solvent. The fine droplets move up through the aqueous phase due to its low density compared to aqueous phase and collect on the surface of the aqueous phase as an organic layer. Finally an aliquot of the organic phase is removed and injected into the separation system for analysis. Several parameters that can affect extraction efficiency including type and volume of extraction and disperser solvents, sample pH, and ionic strength were investigated and optimized. Under the optimum extraction conditions, the extraction recoveries and enrichment factors ranged from 49 to 74% and 1633 to 2466, respectively. Relative standard deviations were in the ranges of 3–6% (n = 6, C = 30 μg L−1) for intra-day and 4–7% (n = 4, C = 30 μg L−1) for inter-day precisions. The limits of detection were in the range of 0.20–0.86 μg L−1. Finally the proposed method was successfully applied to determine the target herbicides in fruit juice and vegetable samples.  相似文献   

19.
An in-syringe demulsified dispersive liquid–liquid microextraction (ISD–DLLME) technique was developed using low-density extraction solvents for the highly sensitive determination of the three trace fungicides (azoxystrobin, diethofencarb and pyrimethanil) in water samples by high performance liquid chromatography–mass spectrometry chromatography–diode array detector/electrospray ionisation mass spectrometry. In the proposed technique, a 5-mL syringe was used as an extraction, separation and preconcentration container. The emulsion was obtained after the mixture of toluene (extraction solvent) and methanol (dispersive solvent) was injected into the aqueous bulk of the syringe. The obtained emulsion cleared into two phases without centrifugation, when an aliquot of methanol was introduced as a demulsifier. The separated floating organic extraction solvent was impelled and collected into a pipette tip fitted to the tip of the syringe. Under the optimal conditions, the enrichment factors for azoxystrobin, diethofencarb and pyrimethanil were 239, 200, 195, respectively. The limits of detection, calculated as three times the signal-to-noise ratio (S N−1), were 0.026 μg L−1 for azoxystrobin, 0.071 μg L−1 for diethofencarb and 0.040 μg L−1 for pyrimethanil. The repeatability study was carried out by extracting the spiked water samples at concentration levels of 0.02 μg mL−1 for all the three fungicides. The relative standard deviations varied between 4.9 and 8.2% (n = 5). The recoveries of all the three fungicides from tap, lake and rain water samples at spiking levels of 0.2, 1, 5 μg L−1 were in the range of 90.0–105.0%, 86.0–114.0% and 88.6–110.0%, respectively. The proposed ISD–DLLME technique was demonstrated to be simple, practical and efficient for the determination of different kinds of fungicide residues in real water samples.  相似文献   

20.
In this study, a sensitive and developed method based on the use of molecularly imprinted-solid phase extraction along with dispersive liquid–liquid microextraction has been reported for selective extraction and pre-concentration of triazine pesticides from aqueous samples. Molecularly imprinted microspheres (template, atrazine) were synthesized using precipitation polymerization and used as sorbent in SPE procedure. A model solution containing the studied pesticides was slowly passed through the atrazine-MIP cartridge. The adsorbed analytes were eluted with methanol, mixed with carbon tetrachloride (as extraction solvent) and rapidly injected into deionized water. In this process, the analytes were extracted into fine droplets of carbon tetrachloride and the fine droplets were sedimented in bottom of the conical test tube by centrifugation. Finally, GC-FID was used for the separation and determination of analytes in the sedimented phase. Some important parameters affecting the performance of developed method were completely investigated. The linear ranges of calibration curves were wide and limits of detection and limits of quantification were between 0.2–7 and 0.5–20 ng mL?1, respectively. The relative standard deviation obtained for six repeated experiments of atrazine (10 ng mL?1) was 3.1 %. The relative recoveries obtained for the atrazine in the spiked samples were within in the range of 92–98 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号