首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Offline dispersive liquid‐liquid microextraction combined with online pressure‐assisted electrokinetic injection was developed to simultaneously enrich seven phenolic compounds in water samples, followed by determination using capillary electrophoresis, namely phenol, 4‐chlorophenol, pentachlorophenol, 2,4,6‐trichlorophenol, 2,4‐dichlorophenol, 2‐chlorophenol, and 2,6‐dichlorophenol. Several parameters affecting separation performance of capillary electrophoresis and the enrichment efficiency of pressure‐assisted electrokinetic injection and dispersive liquid‐liquid microextraction were systematically investigated. Under the optimal conditions, seven phenolic compounds were completely separated within 14 min and good enrichment factors were obtained of 61, 236, 3705, 3288, 920, 86, and 1807 for phenol, 4‐chlorophenol, pentachlorophenol, 2,4,6‐trichlorophenol, 2,4‐dichlorophenol, 2‐chlorophenol, and 2,6‐dichlorophenol, respectively. Good linearity was attained in the range of 0.1–200 μg/L for 2,4‐dichlorophenol, 0.5–200 μg/L for 4‐chlorophenol, pentachlorophenol, 2,4,6‐trichlorophenol, 2‐chlorophenol, and 2,6‐dichlorophenol, as well as 1–200 μg/L for phenol, with correlation coefficients (r) over 0.9905. The limits of detection and quantification ranging from 0.03–0.28 and 0.07–0.94 μg/L were attained. This two step enrichment method was potentially applicable for the rapid and simultaneous determination of phenolic compounds in water samples.  相似文献   

2.
A graphene oxide reinforced polymeric ionic liquids monolith was obtained by copolymerization of graphene oxide doped 1‐(3‐aminopropyl)‐3‐(4‐vinylbenzyl)imidazolium 4‐styrenesulfonate monomer and 1,6‐di‐(3‐vinylimidazolium) hexane bihexafluorophosphate cross‐linking agent. Coupled to high‐performance liquid chromatography, the monolith was used as a solid‐phase microextraction sorbent to analyze several phenolic compounds in aqueous samples. Under the optimized extraction and desorption conditions, linear ranges were 5–400 μg/L for 3‐nitrophenol, 2‐nitrophenol, and 2,5‐dichlorophenol and 2–400 μg/L for 4‐chlorophenol, 2‐methylphenol, and 2,4,6‐trichlorophenol (R2 = 0.9973–0.9988). The limits of detection were 0.5 μg/L for 3‐nitrophenol and 2‐nitrophenol and 0.2 μg/L for the rest of the analytes. The proposed method was used to determine target analytes in groundwater from an industrial park and river water. None of the analytes was detected. Relative recoveries were in the range of 75.5–113%.  相似文献   

3.
LUS‐1 typed nanoporous silica particles were synthesized and silylated with hexamethyldisilazane and investigated as a highly porous fiber coating for solid‐phase microextraction (SPME). The pore size distribution of the prepared Sil‐LUS‐1 was still typical of MCM‐41 and centered at 3 nm with a specific surface area of 720 m2g?1. The SPME fiber was prepared by liming the material on a copper wire. The extraction efficiency of the new fiber was compared with a commercial PDMS fiber for headspace extraction and GC‐MS analysis of phenol, 4‐nitrophenol, 2,4‐dichlorophenol and 4‐chlorophenol in water samples. Due to the high porosity of the prepared fiber it showed a higher sensitivity and better selectivity for the extraction of the target compounds. For optimization of different factors affecting the extraction efficiency, a simplex optimization method was used. The relative standard deviation for the measurements by one fiber was better than 7% for five replicates and the fiber‐to‐fiber reproducibility was about 10% for five fabricated fibers. Detection limits in the range of 0.002 to 0.026 μg mL?1 were obtained for the phenolic compounds. The fiber was successfully applied for the determination of phenolic compounds in natural water samples.  相似文献   

4.
The method of liquid‐phase microextraction assisted with voltage was developed and applied on determination of sulfonamides in water samples. Four analytes, such as sulfamethazine, sulfathiazole, sulfadimethoxine, and sulfamethoxazole were extracted from a sample solution at pH 4.5 through a polypropylene membrane of immobilized with 2‐octanone, and then into 25 μL of the acceptor phase of 10 mM sodium hydroxide, and applied voltage of 100 V. Subsequently, the acceptor solution was directly subjected to analysis by LC‐MS or capillary zone electrophoresis. Linearity was obtained in the range of 1.0–25.0 ng mL?1 with R2 > 0.992 in LC‐MS, and 50–1000 ng mL?1 with R2 > 0.995 in capillary zone electrophoresis. The development of VA‐LPME was also applied in analysis of sulfonamides in water samples to evaluate its practical applicability.  相似文献   

5.
《Electroanalysis》2005,17(13):1160-1170
Analysis of aqueous solutions containing chlorinated phenol pollutants was accomplished by capillary electrophoresis with direct and indirect amperometric detection using a boron‐doped diamond microelectrode. The microelectrode was prepared by (i) coating a thin film of boron‐doped polycrystalline diamond on a sharpened platinum wire (76‐μm diameter) and (ii) sealing the coated wire in a polypropylene pipet tip. The diamond microelectrode, used in end‐column detection, exhibited a low and stable background current with low peak‐to‐peak noise and good electrochemical activity for the pollutants without any conventional pretreatment. The electrode performance was evaluated in terms of the linear dynamic range, sensitivity, limit of quantitation, and response precision for the detection of several priority pollutants (2‐chlorophenol, 3‐chlorophenol, 4‐chlorophenol, 2,4‐dichlorophenol, 2,4,6‐trichlorophenol, and pentachlorophenol). The diamond microelectrode gave good detection figures of merit for these contaminants in the direct amperometric mode with no evidence of any electrode fouling. As an example, the concentration limit of quantitation for 2‐chlorophenol was 100 nM or 13 ppb (S/N=3) and the relative standard deviation of the peak height for 9 injections was 4.7±0.5% (est. 1.1 nL inj.). The separation efficiency was greater than 100 000 plates/m for all seven solutes. The microelectrode was also employed for the indirect detection of the chlorinated phenols. In this approach, which is useful for detecting electroinactive solutes, ferrocene carboxylic acid was added to the run buffer as the electrophore. Good detection figures of merit were also achieved for the separation and detection of 2‐chlorophenol, 3‐chlorophenol, and 2,4‐dichlorophenol in this mode, although the linear dynamic range was not as wide and the limit of quantitation was not as low as in direct amperometry. For example, the concentration limit of quantitation for these pollutants was in the mid micromolar range (1–10 ppm) with excellent response reproducibility of 3.2±0.8%, or less.  相似文献   

6.
An organic‐silica hybrid monolith was prepared by a single‐step ring‐opening polymerization of octaglycidyldimethylsilyl polyhedral oligomeric silsesquioxane (POSS‐epoxy), polyethylenimine (PEI), and β‐cyclodextrin (β‐CD) in a ternary porogenic solvent consisting of polyethylene glycol, 1,4‐butanediol, and 1‐propanol. The framework of POSS‐PEI hybrid monolith could offer well‐defined 3D skeleton, while β‐CD with the ability of forming a host‐guest inclusion complexes with a variety of compounds could show an ability of specific selection. The obtained hybrid monoliths were successfully applied for separation of phenols, benzoic acids, and nucleobases. Especially due to the introduction of β‐CD, positional isomers including hydroquinone and resorcinol, o‐nitrophenol and p‐nitrophenol, as well as p‐chlorophenol and o‐chlorophenol were baseline separated and the column efficiency reached 82 300 plates/m for hydroquinone.  相似文献   

7.
A porous carbon designated as MOF‐5‐C was prepared by directly carbonizing a metal–organic framework (MOF‐5). The morphology and microstructure of MOF‐5‐C were characterized by scanning electron microscopy, N2 adsorption, and powder X‐ray diffraction. The MOF‐5‐C retained the original porous structures of MOF‐5, and showed a high Brunauer–Emmett–Teller surface area (1808 m2 g?1) and large pore volume (3.05 cm3 g?1). To evaluate its adsorption performance, the MOF‐5‐C was used as an adsorbent for the solid‐phase extraction of four phthalate esters from bottled water, peach juice, and soft drink samples followed by high‐performance liquid chromatographic analysis. Several parameters that could affect the extraction efficiencies were investigated. Under the optimum conditions, a good linearity was achieved in the concentration range of 0.1–50.0 ng mL?1 for bottled water sample and 0.2–50.0 ng mL?1 for peach juice and soft drink samples. The limits of detection of the method (S/N = 3) were 0.02 ng mL?1 for bottled water sample, and 0.04–0.05 ng mL?1 for peach juice and soft drink samples. The results indicated that the MOF‐5‐C exhibited an excellent adsorption capability for trace levels of phthalate esters, and it could be a promising adsorbent for the preconcentration of other organic compounds.  相似文献   

8.
《Analytical letters》2012,45(11):2359-2372
Abstract

Ternary mixtures of nitrophenol isomers have been simultaneously determined in synthetic and real matrix by application of genetic algorithm and partial least squares model. All factors affecting the sensitivity were optimized and the linear dynamic range for determination of nitrophenol isomers found. The simultaneous determination of nitrophenol mixtures by using spectrophotometric methods is a difficult problem, due to spectral interferences. The partial least squares modeling was used for the multivariate calibration of the spectrophotometric data. A genetic algorithm is a suitable method for selecting wavelength for PLS calibration of mixtures with almost identical spectra without loss prediction capacity. The experimental calibration matrix was designed by measuring the absorbance over the range 300–520 nm for 21 samples of 1–20 µg mL?1, 1–20 µg mL?1, and 1–10 µg mL?1 of m‐nitrophenol, o‐nitrophenol, and p‐nitrophenol, respectively. The root mean square error of prediction for m‐nitrophenol, o‐nitrophenol, and p‐nitrophenol with genetic algorithms and without genetic algorithms were 0.3732, 0.5997, 0.3181 and 0.7309, 0.9961, 1.0055, respectively. The proposed method was successfully applied for the determination of m‐nitrophenol, o‐nitrophenol, and p‐nitrophenol in synthetic and water samples.  相似文献   

9.
This work reports the application of screen‐printed electrodes bulk‐modified with bismuth precursors to the voltammetric determination of 2‐nitrophenol (2‐NP), 4‐nitrophenol (4‐NP) and 2,4‐dinitrophenol (2,4‐DNP) in water samples. A bismuth film was formed at the electrode surface via in situ reduction of the precursor compound contained in the electrode matrix by cathodic polarization at ?1.20 V. The formation of bismuth layer at the precursor‐modified electrodes was assessed by cyclic voltammetric (CV) at different pH values and by optical techniques. The target nitrophenols were voltammetrically determined by recording their reduction peaks in the differential pulse (DP) mode. The composition and content of the precursor compounds in the printed ink and the effect of the pH of the supporting electrolyte on the DP reduction currents of the 3 target nitrophenols were studied. The limits of quantification (LOQs) in three water matrices (distilled water, tap water and surface water) were in the range 1.1–2.2 µmol L?1. Using a simple solid‐phase extraction (SPE) procedure with Lichrolut EN cartridges and elution with methanol, a preconcentration factor of 100 was achieved; the LOQs were 0.021, 0.027 and 0.025 µmol L?1 for 2‐NP, 4‐NP and 2,4‐DNP, respectively. The recoveries of samples spiked with the 3 target nitrophenols at two concentration levels (0.04 and 0.1 µmol L?1) were always >87 %.  相似文献   

10.
A headspace gas chromatographic approach based on flame ionization detection has been successfully developed for the determination of parts‐per‐billion levels of 2,4‐dichlorophenol and 2,6‐dichlorophenol in processed dairy milk. Under the right environmental conditions, these compounds are produced as products of the reductive dechlorination of pentachlorophenol. Maintaining a highly inert chromatographic system and employing a recently commercialized inert capillary column permits the analysis of 2,4‐dichlorophenol and 2,6‐dichlorophenol without derivatization. Further, a detection limit improvement of more than a factor of two was achieved by adding sodium sulfate to substantially decrease the solute partition coefficient in the matrix. A detection limit of 1 ng/g and a limit of quantitation of 2 ng/g were attained, and complete analysis can be conducted in < 13 min. Reproducibility of area counts over a range from 20 to 200 ng/g and over a period of 2 days were found to be less than 6% (n = 20). A linear range from 5 to 500 ng/g with a correlation coefficient of at least 0.9992 was obtained for 2,4‐dichlorophenol and 2,6‐dichlorophenol. Spike recoveries from 10 to 500 ng/g for all the analytes range from 92 to 102%.  相似文献   

11.
In present study, a simultaneous derivatization and air‐assisted liquid–liquid microextraction method combined with gas chromatography–nitrogen phosphorous detection has been developed for the determination of some phenolic compounds in biological samples. The analytes are derivatized and extracted simultaneously by a fast reaction with 1‐flouro‐2,4‐dinitrobenzene under mild conditions. Under optimal conditions low limits of detection in the range of 0.05–0.34 ng mL?1 are achievable. The obtained extraction recoveries are between 84 and 97% and the relative standard deviations are less than 7.2% for intraday (n = 6) and interday (n = 4) precisions. The proposed method was demonstrated to be a simple and efficient method for the analysis of phenols in biological samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
《Electroanalysis》2006,18(2):195-199
A miniaturized analytical system for the separation and amperometric detection of toxic nitrophenols, based on the coupling of a micromachined capillary electrophoresis (CE) chip with a glassy carbon detector is described. This microsystem enables a rapid (120 s/sample) simultaneous determination of five priority nitrophenolic pollutants (2‐nitrophenol, 3‐nitrophenol, 4‐nitrophenol, 2,4‐dinitrophenol, and 2‐methyl‐4,6‐dinitrophenol). These compounds can be detected down to the 1×10?5 M level using a 15 mM phosphate buffer pH 7.2 (containing 1.3 mM α‐cyclodextrin) as running solution on 77 mm long microchannel by applying a separation voltage of 3000 V and a negative potential of ?0.7 V (vs. Ag /AgCl wire). Applicability to ground water samples was demonstrated.  相似文献   

13.
2,4‐Dichlorophenoxy acetic acid herbicide is spectrophotometrically determined by diazotization method in a flow injection assembly. The method is based on base hydrolysis of herbicides. The hydrolyzed product 2,4‐dichlorophenol is reacted with diazotized sulfanilic acid. The absorbance of the resulting coloured product was measured at 480 nm. The calibration graph is linear over the range of 0.2–20 μgmL?1, with a relative standard deviation of (RSD) of 7.2% and sample throughput of 90 samples h?1. The % recovery for determination of 2,4‐dichlorophenoxy acetic acid was found to be 92.0–95.3%. The method is easy, simple and faster than the established chromatographic method. The method was applied for determination of 2,4‐dichlorophenoxy acetic acid herbicide in commercial formulations and for residue determination in fruits and food samples.  相似文献   

14.
A sensitive method of CZE‐ultraviolet (UV) detection based on the on‐line preconcentration strategy of field‐amplified sample injection (FASI) was developed for the simultaneous determination of five kinds of chlorophenols (CPs) namely 4‐chlorophenol (4‐CP), 2‐chlorophenol (2‐CP), 2,4‐dichlorophenol (2,4‐DCP), 2,4,6‐trichlorophenol (2,4,6‐TCP), and 2,6‐dichlorophenol (2,6‐DCP) in water samples. Several parameters affecting CZE and FASI conditions were systematically investigated. Under the optimal conditions, sensitivity enhancement factors for 4‐CP, 2‐CP, 2,4‐DCP, 2,4,6‐TCP, and 2,6‐DCP were 9, 27, 35, 43, and 43 folds, respectively, compared with the direct CZE, and the baseline separation was achieved within 5 min. Then, the developed FASI‐CZE‐UV method was applied to tap and lake water samples for the five CPs determination. The LODs (S/N = 3) were 0.0018–0.019 µg/mL and 0.0089–0.029 µg/mL in tap water and lake water, respectively. The values of LOQs in tap water (0.006–0.0074 µg/mL) were much lower than the maximum permissible concentrations of 2,4,6‐TCP, 2,4‐DCP, and 2‐CP in drinking water stipulated by World Health Organization (WHO) namely 0.3, 0.04, and 0.01 µg/mL, respectively, and thereby the method was suitable to detect the CPs according to WHO guidelines. Furthermore, the method attained high recoveries in the range of 83.0–119.0% at three spiking levels of five CPs in the two types of water samples, with relative standard deviations of 0.37–8.58%. The developed method was proved to be a simple, sensitive, highly automated, and efficient alternative to CPs determination in real water samples.  相似文献   

15.
《Electrophoresis》2018,39(19):2431-2438
Dispersive liquid–liquid microextraction (DLLME) coupled with CE was developed for simultaneous determination of five types of chlorophenols (CPs), namely 2‐chlorophenol (2‐CP), 4‐chlorophenol (4‐CP), 2,4‐dichlorophenol (2,4‐DCP), 2,6‐dichlorophenol (2,6‐DCP), and 2,4,6‐trichlorophenol (2,4,6‐TCP) in water samples. Several parameters affecting DLLME and CE conditions were systematically investigated. Under the optimized DLLME‐CE conditions, the five CPs were separated completely within 7.5 min and good enrichment factors were obtained of 40, 193, 102, 15, and 107 for 4‐CP, 2,4,6‐TCP, 2,4‐DCP, 2‐CP, and 2,6‐DCP, respectively. Good linearity was attained in the range of 1–200 μg/L for 2,4,6‐TCP, 2,4‐DCP, 2−300 μg/L for 4‐CP and 2‐CP, and 1−300 μg/L for 2,6‐DCP, with correlation coefficients (r) over 0.99. The LOD (S/N = 3) and the LOQ (S/N = 10) were 0.31−0.75 μg/L and 1.01−2.43 μg/L, respectively. Recoveries ranging from 60.85 to 112.36% were obtained with tap, lake, and river water spiked at three concentration levels and the RSDs (for n = 3) were 1.31–11.38%. With the characteristics of simplicity, cost‐saving, and environmental friendliness, the developed DLLME‐CE method proved to be potentially applicable for the rapid, sensitive, and simultaneous determination of trace CPs in complicated water samples.  相似文献   

16.
《Analytical letters》2012,45(9):2025-2038
Abstract

A simple and highly sensitive method to quantify the rates of production of phenoxyl radicals in enzyme reaction is described. This method employs the peroxidase‐catalyzed reaction between chlorophenols and hydroperoxide to generate phenoxyl free radicals, which can enhance dimerization of L‐tyrosine. The product, dityrosine, was monitored fluorometrically at the excitation/emission wavelength of 320/410 nm and the initial rate of accelerated‐accumulation of dityrosine represents the formation rate of phenoxyl free radicals. With this method, the phenoxyl radicals generated in oxidation of chlorophenols with hydrogen peroxide, catalyzed by horseradish peroxidase, were investigated. Phenoxyl radicals generated from as low as 5.0×10?9 M 2,4‐dichlorophenol, for example, can be readily detected with a relative standard deviation of 2.6% for 9 replicated determination. The detection limits of phenoxyl radicals produced by various chlorophenols are 4.2×10?9, 1.1×10?9, 1.0×10?10, 2.8×10?8, and 1.1×10?7 M for 2‐chlorophenol, 4‐chlorophenol, 2,4‐dichlorophenol, 2,4,6‐trichlorophenol, and 2,3,4,6‐tetrachlorophenol, respectively. The possible pathway of the reaction is proposed. The protocol is suitable for quantification of free radicals in enzyme reaction and shows promise in being applied to biological systems.  相似文献   

17.
This work about the development of yttria‐based polymeric coating using [bis(hydroxyethyl) amine] terminated polydimethylsiloxanes and yttrium trimethoxyethoxide inside the capillary. The coated capillary was utilized for online capillary microextraction and high‐performance liquid chromatography analysis. The prepared coating material was characterized using scanning electron microscopy, X‐ray photoelectron spectroscopy, energy dispersive X‐ray spectrometry, and thermogravimetric analysis. The coated capillary with polymer presented better extraction efficiency compared with the pure yttria‐based coated capillary with applicability in extreme pH environments (pH 0–pH 14). Excellent extraction towards polyaromatic hydrocarbons, aldehydes, ketones, alcohols, phenols, and amides was observed with limit of detection ranging from 0.18 to 7.35 ng/mL (S/N = 3) and reproducibility in between 0.6 and 6.8% (n = 3). Capillary‐to‐capillary extraction analysis has presented reproducibility between 4.1 and 9.9%. The analysis provided linear response for seven selected phenols in the range of 5–200 ng/mL with R2 values between 0.9971 and 0.9998. The inter‐day, intra‐day, and capillary‐to‐capillary reproducibility for phenols was also <10%. Real sample analysis by spiking 5, 50, and 200 ng/mL of phenols in wastewater and pool‐water produced recovery between 84.7 and 94.3% and reproducibility within 7.6% (n = 3).  相似文献   

18.
A sensitive method for the multi-residue analysis of organophosphorus pesticides in environmental samples has been developed. It involves an automated solid phase extraction procedure using a Gilson ASPEC XLi and capillary electrophoresis analysis with UV detection. Acephate, methamidophos, dichlorvos, dicrotophos and malathion could be separated by micellar electrokinetic capillary chromatography using an electrophoretic electrolyte containing 20 mM phosphate buffer (pH 7.5) and 75 mM sodium dodecyl sulphate. A linear relationship between concentration and peak area was obtained within the range 0.2–450 g mL?1 with correlation coefficients greater than 0.996 and detection limits between 7 and 150 ng mL?1. Intra- and inter-day precision values of about 0.8–2.3% RSD (n=11) and 0.9–3.0% RSD (n=15), respectively were obtained. When the preconcentration step was used, an enrichment factor of 250 was easily achieved in the analysis of water samples, making it possible to determinate pesticide residues at concentration levels as low as 0.04 ng mL?1. In analyses of vegetables and grains, the sensitivity levels were about 0.03 μg?1.  相似文献   

19.
An analytical procedure for the simultaneous determination in human urine of four thiophenethylamine designer drugs (2C‐T series) is reported. The quantitative analysis was performed by capillary electrophoresis with mass spectrometric detection (CE/MS), using 2,5‐dimethoxy‐4‐methylthiophenethylamine‐D4 (2C‐T‐D4) as internal standard. In order to minimize interferences with matrix components and to preconcentrate target analytes, solid‐phase extraction (SPE) was introduced in the method as a clean‐up step. The method was validated according to international guidelines. The data for accuracy and precision were within required limits. Calibration curves were generated over the range from 10 to 500 ng mL?1 and correlation coefficients always exceeded 0.997. The method was demonstrated to be specific, sensitive, and reliable for the analysis of these derivatives in urine samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
A new reactive monolith, poly(3‐chloro‐2‐hydroxypropyl methacrylate‐co‐ethylene dimethacrylate), poly(HPMA‐Cl‐co‐EDMA) was synthesized and post‐functionalized by taurine (2‐aminoethane sulfonic acid) to obtain a zwitterionic stationary phase for capillary electrochromatography. The new stationary phase contained charged groups such as secondary amine providing anodic electroosmotic flow and sulfonic acid groups providing cathodic electroosmotic flow. Hence, the capillary electrochromatography separations with the new zwitterionic monolith were performed with either anodic or cathodic electroosmotic flow. The electrochromatographic separation of alkylbenzenes and phenols was successfully performed. The zwitterionic monolith also allowed the separation of nucleosides using only electrokinetic mode. Theoretical plate numbers up to ~105 plates/m were achieved. Our study is the first report based on poly(HPMA‐Cl‐co‐EDMA) reactive monolith post‐functionalized with a zwitterionic ligand allowing to operate in both anodic and cathodic electroosmotic flow modes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号