首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article deals with the hitherto unexplored metal complexes of deprotonated 6,12‐di(pyridin‐2‐yl)‐5,11‐dihydroindolo[3,2‐b]carbazole (H2L). The synthesis and structural, optical, electrochemical characterization of dimeric [{RuIII(acac)2}2(μ‐L.?)]ClO4 ([ 1 ]ClO4, S=1/2), [{RuII(bpy)2}2(μ‐L.?)](ClO4)3 ([ 2 ](ClO4)3, S=1/2), [{RuII(pap)2}2(μ‐L2?)](ClO4)2 ([ 4 ](ClO4)2, S=0), and monomeric [(bpy)2RuII(HL?)]ClO4 ([ 3 ]ClO4, S=0), [(pap)2RuII(HL?)]ClO4 ([ 5 ]ClO4, S=0) (acac=σ‐donating acetylacetonate, bpy=moderately π‐accepting 2,2’‐bipyridine, pap=strongly π‐accepting 2‐phenylazopyridine) are reported. The radical and dianionic states of deprotonated L in isolated dimeric 1 +/ 2 3+ and 4 2+, respectively, could be attributed to the varying electronic features of the ancillary (acac, bpy, and pap) ligands, as was reflected in their redox potentials. Perturbation of the energy level of the deprotonated L or HL upon coordination with {Ru(acac)2}, {Ru(bpy)2}, or {Ru(pap)2} led to the smaller energy gap in the frontier molecular orbitals (FMO), resulting in bathochromically shifted NIR absorption bands (800–2000 nm) in the accessible redox states of the complexes, which varied to some extent as a function of the ancillary ligands. Spectroelectrochemical (UV/Vis/NIR, EPR) studies along with DFT/TD‐DFT calculations revealed (i) involvement of deprotonated L or HL in the oxidation processes owing to its redox non‐innocent potential and (ii) metal (RuIII/RuII) or bpy/pap dominated reduction processes in 1 + or 2 2+/ 3 +/ 4 2+/ 5 +, respectively.  相似文献   

2.
The viability of Lewis‐acid ionic liquids for the synthesis of low‐valent bismuth compounds is demonstrated. At room temperature, elemental bismuth and bismuth(III) cations synproportionate in the ionic liquid [BMIM]Cl/AlCl3 ([BMIM]+: 1‐n‐butyl‐3‐methylimidazolium) within minutes. The existence of bismuth polycations in the dark colored solution was proven by Raman spectroscopy. Dark‐red crystals of Bi5(AlCl4)3 were isolated from the ionic liquid and characterized by Raman spectroscopy and X‐ray crystallography (rhombohedral space‐group , a = 1187.1(2) pm, c = 3012.0(3) pm). The method allows the synthesis of bismuth cluster compounds under milder conditions than in high‐temperature melts and more conveniently and environmental friendly than in liquid SO2 with strongly oxidizing, toxic agents like SbF5 or AsF5.  相似文献   

3.
Bi24Ru3Br20: A Pseudo-Tetragonal Structure with [RuBi6Br12] Clusters and [Ru2Bi17Br4] Groups The melting reaction of Ru with Bi and BiBr yields black, lustrous, air insensitive crystals of the subbromide Bi24Ru3Br20. The orthorhombic crystal structure (space group Pc21n, a = b = 1377.8(1) pm, c = 3222.3(4) pm, V = 6117.0 · 106 pm3) deceives pseudo-symmetry with respect to the tetragonal space group P4/ncc leading to multiply twinned crystals. The structure can formally be subdivided in [RuBi6Br12] clusters, [Ru2Bi17Br4] stacks, and [BiBr4] groups.  相似文献   

4.
New compounds [Ru(pap)2(L)](ClO4), [Ru(pap)(L)2], and [Ru(acac)2(L)] (pap=2‐phenylazopyridine, L?=9‐oxidophenalenone, acac?=2,4‐pentanedionate) have been prepared and studied regarding their electron‐transfer behavior, both experimentally and by using DFT calculations. [Ru(pap)2(L)](ClO4) and [Ru(acac)2(L)] were characterized by crystal‐structure analysis. Spectroelectrochemistry (EPR, UV/Vis/NIR), in conjunction with cyclic voltammetry, showed a wide range of about 2 V for the potential of the RuIII/II couple, which was in agreement with the very different characteristics of the strongly π‐accepting pap ligand and the σ‐donating acac? ligand. At the rather high potential of +1.35 V versus SCE, the oxidation of L? into L. could be deduced from the near‐IR absorption of [RuIII(pap)(L.)(L?)]2+. Other intense long‐wavelength transitions, including LMCT (L?→RuIII) and LL/CT (pap.?→L?) processes, were confirmed by TD‐DFT results. DFT calculations and EPR data for the paramagnetic intermediates allowed us to assess the spin densities, which revealed two cases with considerable contributions from L‐radical‐involving forms, that is, [RuIII(pap0)2(L?)]2+?[RuII(pap0)2(L.)]2+ and [RuIII(pap0)(L?)2]+?[RuII(pap0)(L?)(L?)]+. Calculations of electrogenerated complex [RuII(pap.?)(pap0)(L?)] displayed considerable negative spin density (?0.188) at the bridging metal.  相似文献   

5.
There has been a great deal of recent interest in extended compounds containing Ru3+ and Ru4+ in light of their range of unusual physical properties. Many of these properties are displayed in compounds with the perovskite and related structures. Here we report an array of structurally diverse hybrid ruthenium halide perovskites and related compounds: MA2RuX6 (X=Cl or Br), MA2MRuX6 (M=Na, K or Ag; X=Cl or Br) and MA3Ru2X9 (X=Br) based upon the use of methylammonium (MA=CH3NH3+) on the perovskite A site. The compounds MA2RuX6 with Ru4+ crystallize in the trigonal space group and can be described as vacancy‐ordered double‐perovskites. The ordered compounds MA2MRuX6 with M+ and Ru3+ crystallize in a structure related to BaNiO3 with alternating MX6 and RuX6 face‐shared octahedra forming linear chains in the trigonal space group. The compound MA3Ru2Br9 crystallizes in the orthorhombic Cmcm space group and displays pairs of face‐sharing octahedra forming isolated Ru2Br9 moieties with very short Ru–Ru contacts of 2.789 Å. The structural details, including the role of hydrogen bonding and dimensionality, as well as the optical and magnetic properties of these compounds are described. The magnetic behavior of all three classes of compounds is influenced by spin–orbit coupling and their temperature‐dependent behavior has been compared with the predictions of the appropriate Kotani models.  相似文献   

6.
An innovative soft chemical approach was applied, using ionic liquids as an alternative reaction medium for the synthesis of tellurium polycationic cluster compounds at room temperature. [Mo2Te12]I6, Te6[WOCl4]2, and Te4[AlCl4]2 were isolated from the ionic liquid [BMIM]Cl/AlCl3 ([BMIM]+: 1‐n‐butyl‐3‐methylimidazolium) and characterized. Black, cube‐shaped crystals of [Mo2Te12]I6, which is not accessible by conventional chemical transport reaction, were obtained by reaction of the elements at room temperature in [BMIM]Cl/AlCl3. The monoclinic structure (P21/n, a = 1138.92(2) pm, b = 1628.13(2) pm, c = 1611.05(2) pm, β = 105.88(1) °) is homeotypic to the triclinic bromide [Mo2Te12]Br6. In the binulear complex [Mo2Te12]6+, the molybdenum(III) atoms are η4‐coordinated by terminal Te42+ rings and two bridging η2‐Te22– dumbbells. Despite the short Mo···Mo distance of 297.16(5) pm, coupling of the magnetic moments is not observed. The paramagnetic moment of 3.53 μB per molybdenum(III) atom corresponds to an electron count of seventeen. Black crystals of monoclinic Te6[WOCl4]2 are obtained by the oxidation of tellurium with WOCl4 in [BMIM]Cl/AlCl3. Tellurium and tellurium(IV) synproportionate in the ionic liquid at room temperature yielding violet crystals of orthorhombic Te4[AlCl4]2.  相似文献   

7.
Proton dissociation of an aqua‐Ru‐quinone complex, [Ru(trpy)(q)(OH2)]2+ (trpy = 2,2′ : 6′,2″‐terpyridine, q = 3,5‐di‐t‐butylquinone) proceeded in two steps (pKa = 5.5 and ca. 10.5). The first step simply produced [Ru(trpy)(q)(OH)]+, while the second one gave an unusual oxyl radical complex, [Ru(trpy)(sq)(O?.)]0 (sq = 3,5‐di‐t‐butylsemiquinone), owing to an intramolecular electron transfer from the resultant O2? to q. A dinuclear Ru complex bridged by an anthracene framework, [Ru2(btpyan)(q)2(OH)2]2+ (btpyan = 1,8‐bis(2,2′‐terpyridyl)anthracene), was prepared to place two Ru(trpy)(q)(OH) groups at a close distance. Deprotonation of the two hydroxy protons of [Ru2(btpyan)(q)2(OH)2]2+ generated two oxyl radical Ru‐O?. groups, which worked as a precursor for O2 evolution in the oxidation of water. The [Ru2(btpyan)(q)2(OH)2](SbF6)2 modified ITO electrode effectively catalyzed four‐electron oxidation of water to evolve O2 (TON = 33500) under electrolysis at +1.70 V in H2O (pH 4.0). Various physical measurements and DFT calculations indicated that a radical coupling between two Ru(sq)(O?.) groups forms a (cat)Ru‐O‐O‐Ru(sq) (cat = 3,5‐di‐t‐butylcathechol) framework with a μ‐superoxo bond. Successive removal of four electrons from the cat, sq, and superoxo groups of [Ru2(btpyan)(cat)(sq)(μ‐O2?)]0 assisted with an attack of two water (or OH?) to Ru centers, which causes smooth O2 evolution with regeneration of [Ru2(btpyan)(q)2(OH)2]2+. Deprotonation of an Ru‐quinone‐ammonia complex also gave the corresponding Ru‐semiquinone‐aminyl radical. The oxidized form of the latter showed a high catalytic activity towards the oxidation of methanol in the presence of base. Three complexes, [Ru(bpy)2(CO)2]2+, [Ru(bpy)2(CO)(C(O)OH)]+, and [Ru(bpy)2(CO)(CO2)]0 exist as an equilibrium mixture in water. Treatment of [Ru(bpy)2(CO)2]2+ with BH4? gave [Ru(bpy)2(CO)(C(O)H)]+, [Ru(bpy)2(CO)(CH2OH)]+, and [Ru(bpy)2(CO)(OH2)]2+ with generation of CH3OH in aqueous conditions. Based on these results, a reasonable catalytic pathway from CO2 to CH3OH in electro‐ and photochemical CO2 reduction is proposed. A new pbn (pbn = 2‐pyridylbenzo[b]‐1,5‐naphthyridine) ligand was designed as a renewable hydride donor for the six‐electron reduction of CO2. A series of [Ru(bpy)3‐n(pbn)n]2+ (n = 1, 2, 3) complexes undergoes photochemical two‐ (n = 1), four‐ (n = 2), and six‐electron reductions (n = 3) under irradiation of visible light in the presence of N(CH2CH2OH)3. © 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 9: 169–186; 2009: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.200800039  相似文献   

8.
The reaction of an electron‐rich transition metal M (M = Ru, Rh, Ir), tellurium and TeX4 (X = Cl, Br, I) resulted in black crystals of five ternary coordination polymers with the general composition [MIII(Te6)]X3 (M = Rh, Ir) and of the molecular cluster compound [RuII2(Te6)](TeIIBr3)4(TeIIBr2)2. X‐ray diffraction on single‐crystals revealed that the compounds [M(Te6)]X3 crystallize isostructurally in the trigonal space group type R$\bar{3}$ c. In their crystal structures linear, positively charged [MIII(Te6)] chains form the motif of a hexagonal rod packing. In the chain, each of the formally uncharged Te6 molecules with chair conformation acts as a bis‐tridentate bridging ligand to two M atoms. The octahedrally coordinated M atoms are spiro atoms in the chain of trans vertices sharing heterocubane fragments. Including the isolated halide ions, which provide charge balance, the entire arrangement resembles a cut‐out of the α‐polonium structure type.In the monoclinic compound Ru2Te12Br16 (space group P21/n), the ruthenium atoms of the hetero‐cubane core of the molecular cluster [Ru2(Te6)](TeBr3)4(TeBr2)2 are saturated by terminal bromidotellurate(II) groups. Again, the Te6 ring is formally uncharged. With the tellurium atoms acting as electron‐pair donors the 18 electron rule is fulfilled for the M atoms in all compounds.  相似文献   

9.
A series of cationic and neutral RuII complexes of the general formula [Ru(L)(X) (tBuCN)4]+X? and [Ru(L)(X)2(tBuCN)3)], that is, [Ru(CF3SO3){NCC(CH3)3}4(IMesH2)]+[CF3SO3]? ( 1 ), [Ru(CF3SO3){NCC(CH3)3}4(IMes)]+[CF3SO3]? ( 2 ), [RuCl{NCC(CH3)3}4(IMes)]+Cl? ( 3 ), [RuCl{NCC(CH3)3}4(IMesH2)+Cl?]/[RuCl2{NCC(CH3)3}3(IMesH2)] ( 4 ), and [Ru(NCO)2{NCC(CH3)3}3(IMesH2)] ( 5 ) (IMes=1,3‐dimesitylimidazol‐2‐ylidene, IMesH2=1,3‐dimesityl‐imidazolin‐2‐ylidene) have been synthesized and used as UV‐triggered precatalysts for the ring‐opening metathesis polymerization (ROMP) of different norborn‐2‐ene‐ and cis‐cyclooctene‐based monomers. The absorption maxima of complexes 1 – 5 were in the range of 245–255 nm and thus perfectly fit the emission band of the 254 nm UV source that was used for activation. Only the cationic RuII‐complexes based on ligands capable of forming μ2‐complexes such as 1 and 2 were found to be truly photolatent in ROMP. In contrast, complexes 3 – 5 could be activated by UV light; however, they also showed a low but significant ROMP activity in the absence of UV light. As evidenced by 1H and 13C NMR spectroscopy, the structure of the polymers obtained with either 1 or 2 are similar to those found in the corresponding polymers prepared by the action of [Ru(CF3SO3)2(IMesH2)(CH‐2‐(2‐PrO)‐C6H4)], which strongly suggest the formation of Ru‐based Grubbs‐type initiators in the course of the UV‐based activation process. Precatalysts that have the IMesH2 ligand showed significantly enhanced reactivity as compared with those based on the IMes ligand, which is in accordance with reports on the superior reactivity of IMesH2‐based Grubbs‐type catalysts compared with IMes‐based systems.  相似文献   

10.
Bi2S3 was dissolved in the presence of either AuCl/PtCl2 or AgCl in the ionic liquids [BMIm]Cl ⋅ xAlCl3 (BMIm=1-n-butyl-3-methylimidazolium; x=4–4.3) through annealing the mixtures at 180 or 200 °C. Upon cooling to room temperature, orange, air-sensitive crystals of [BMIm](Bi4S4)[AlCl4]5 ( 1 ) or Ag(Bi7S8)[S(AlCl3)3]2[AlCl4]2 ( 2 ) precipitated, respectively. 1 did not form in the absence of AuCl/PtCl2, suggesting an essential role of the metal cations. X-ray diffraction on single-crystals of 1 revealed a monoclinic crystal structure that contains (Bi4S4)4+ heterocubanes and [AlCl4] tetrahedra as well as [BMIm]+ cations. The intercalation of the ionic liquid was confirmed via solid state NMR spectroscopy, revealing unusual coupling behavior. The crystal structure of 2 consists of (Bi7S8)5+ spiro-dicubanes, [S(AlCl3)3]2− tetrahedra triples, isolated [AlCl4] tetrahedra, and heavily disordered silver(I) cations. No cation ordering took place in 2 upon slow cooling to 100 K.  相似文献   

11.
Based on data from more than 40 crystal structures of metal complexes with azo‐based bridging ligands (2,2′‐azobispyridine, 2,2′‐azobis(5‐chloropyrimidine), azodicarbonyl derivatives), a correlation between the N? N bond lengths (dNN) and the oxidation state of the ligand (neutral, neutral/back‐donating, radical‐anionic, dianionic) was derived. This correlation was applied to the analysis of four ruthenium compounds of 2,2′‐azobispyridine (abpy), that is, the new asymmetrical rac‐[(acac)2Ru1(μ‐abpy)Ru2(bpy)2](ClO4)2 ([ 1 ](ClO4)2), [Ru(acac)2(abpy)] ( 2 ), [Ru(bpy)2(abpy)](ClO4)2 ([ 3 ](ClO4)2), and meso‐[(bpy)2Ru(μ‐abpy)Ru(bpy)2](ClO4)3 ([ 4 ](ClO4)3; acac?=2,4‐pentanedionato, bpy=2,2′‐bipyridine). In agreement with DFT calculations, both mononuclear species 2 and 3 2+ can be described as ruthenium(II) complexes of unreduced abpy0, with 1.295(5)<dNN<1.320(3) Å, thereby exhibiting effects from π back‐donation. However, the abpy ligand in both the asymmetrical diamagnetic compound 1 2+ (dNN=1.374(6) Å) and the symmetrical compound 4 3+ (dNN=1.360(7), 1.368(8) Å) must be formulated as abpy.?. Remarkably, the addition of [RuII(bpy)2]2+ to mononuclear [RuII(acac)2(abpy0)] induces intracomplex electron‐transfer under participation of the noninnocent abpy bridge to yield rac‐[(acac)2Ru1III(μ‐abpy.?)Ru2II(bpy)2]2+ ( 1 2+) with strong antiferromagnetic coupling between abpy.? and RuIII (DFT (B3LYP/LANL2DZ/6‐31G*)‐calculated triplet–singlet energy separation ES=1?ES=0=11739 cm?1). Stepwise one‐electron transfer was studied for compound 1 n, n=1?, 0, 1+, 2+, 3+, by UV/Vis/NIR spectroelectrochemistry, EPR spectroscopy, and by DFT calculations. Whereas the first oxidation of compound 1 2+ was found to mainly involve the central ligand to produce an (abpy0)‐bridged Class I mixed‐valent Ru1IIIRu2II species, the first reduction of compound 1 2+ affected both the bridge and Ru1 atom to form a radical complex ( 1 +), with considerable metal participation in the spin‐distribution. Further reduction moves the spin towards the {Ru2(bpy)2} entity.  相似文献   

12.
Ag3Bi14Br21: a Subbromide with Bi24+ Dumbbells and Bi95+ Polyhedra – Synthesis, Crystal Structure and Chemical Bonding Black crystals of Ag3Bi14Br21 = (Bi95+)[Ag3Bi3Br153?](Bi2Br62?), the first argentiferous bismuth subhalide, were obtained from a stoichiometric melt of Ag, Bi, and BiBr3. The compound crystallizes in the monoclinic space group P21/m with lattice parameters a = 1277.78(5) pm, b = 1466.87(6) pm, c = 1342.62(5) pm, and β = 108.47(1)° at 110(5) K. In contrast to all other bismuth subhalides that contain an electron‐rich transition metal, the silver atoms are not bonded to bismuth atoms. Instead they are integrated into the anionic bromometallate network, which consists of [MBr6]‐octahedra (M = Ag, Bi) that share edges and vertices. These corrugated sheets alternate with tessellated layers formed by Bi95+ polycations and hitherto unknown (BiII2Br6)2? groups. The latter anions contain Bi24+ dumbbells (299 pm) and can be represented by the structured formula [Br2BiII(μ–Br)2BiIIBr2]2?. The multi‐center bonding within the Bi95+ cluster and the bent single‐bond in the Bi2 dumbbell can be visualized using the electron localization indicator (ELI‐D).  相似文献   

13.
The cationic cluster complexes [Ru3(CO)10(μ‐H)(μ‐κ2N,C‐L1Me)]+ ( 3 +; HL1=quinoxaline) and [Ru3(CO)10(μ‐H)(μ‐κ2N,C‐L2Me)]+ ( 5 +; HL2=pyrazine) have been prepared as triflate salts by treatment of their neutral precursors [Ru3(CO)10(μ‐H)(μ‐κ2N,C‐Ln)] with methyl triflate. The cationic character of their heterocyclic ligands is responsible for their enhanced tendency to react with anionic nucleophiles relative to that of hydrido triruthenium carbonyl clusters that have neutral N‐heterocyclic ligands. These clusters react instantaneously with methyl lithium and potassium tris‐sec‐butylborohydride (K‐selectride) to give neutral products that contain novel nonaromatic N‐heterocyclic ligands. The following are the products that have been isolated: [Ru3(CO)9(μ‐H)(μ3‐κ2N,C‐L1Me2)] ( 6 ; from 3 + and methyl lithium), [Ru3(CO)9(μ‐H)(μ3‐κ2N,C‐L1HMe)] ( 7 ; from 3 + and K‐selectride), [Ru3(CO)9(μ‐H)(μ3‐κ2N,C‐L2Me2)] ( 8 ; from 5 + and methyl lithium), and [Ru3(CO)9(μ‐H)(μ3‐κ2N,C‐L2HMe)] ( 11 ; from 5 + and K‐selectride). Whereas the reactions of 3 + lead to products that arise from the attack of the corresponding nucleophile at the C atom of the only CH group adjacent to the N‐methyl group, the reactions of 5 + give mixtures of two products that arise from the attack of the nucleophile at one of the C atoms located on either side of the N‐methyl group. The LUMOs and the atomic charges of 3 + and 5 + confirm that the reactions of these clusters with anionic nucleophiles are orbital‐controlled rather than charge‐controlled processes. The N‐heterocyclic ligands of all of these neutral products are attached to the metal atoms in nonconventional face‐capping modes. Those of compounds 6 – 8 have the atoms of a ligand C?N fragment σ‐bonded to two Ru atoms and π‐bonded to the other Ru atom, whereas the ligand of compound 11 has a C? N fragment attached to a Ru atom through the N atom and to the remaining two Ru atoms through the C atom. A variable‐temperature 1H NMR spectroscopic study showed that the ligand of compound 7 is involved in a fluxional process at temperatures above ?93 °C, the mechanism of which has been satisfactorily modeled with the help of DFT calculations and involves the interconversion of the two enantiomers of this cluster through a conformational change of the ligand CH2 group, which moves from one side of the plane of the heterocyclic ligand to the other, and a 180° rotation of the entire organic ligand over a face of the metal triangle.  相似文献   

14.
The intermetalloid clusters [M2Bi12]4+ (M = Ni, Rh) were synthesized as halogenido‐aluminates in Lewis‐acidic ionic liquids. The reaction of bismuth and NiCl2 in [BMIm]Cl · 5AlCl3 (BMIm = 1‐butyl‐3‐methylimidazolium) at 180 °C yielded black, triclinic (P1 ) crystals of [Ni2Bi12][AlCl4]3[Al2Cl7]. Black, monoclinic (P21/m) crystals of [Rh2Bi12][AlBr4]4 precipitated after dissolving the cluster salt Bi12–xRhX13–x (X = Cl, Br; 0 < x < 1) in [BMIm]Br·4.1AlBr3 at 140 °C. In the cationic cluster [Ni2Bi12]4+, the nickel atoms center two base‐sharing square antiprisms of bismuth atoms (symmetry close to D4h). The valence‐electron‐poorer rhodium‐containing cluster is a distorted variant of this motif: the terminating Bi4 rings are folded to bicyclic “butterflies“ and the central square splits into two dumbbells (symmetry close to D2h). DFT‐based calculations and real‐space bonding analyses place the intermetalloid units between a triple‐decker complex and a conjoined Wade‐Mingos cluster.  相似文献   

15.
The diruthenium(III) compound [(μ‐oxa){Ru(acac)2}2] [ 1 , oxa2?=oxamidato(2?), acac?=2,4‐pentanedionato] exhibits an S=1 ground state with antiferromagnetic spin‐spin coupling (J=?40 cm?1). The molecular structure in the crystal of 1? 2 C7H8 revealed an intramolecular metal–metal distance of 5.433 Å and a notable asymmetry within the bridging ligand. Cyclic voltammetry and spectroelectrochemistry (EPR, UV/Vis/NIR) of the two‐step reduction and of the two‐step oxidation (irreversible second step) produced monocation and monoanion intermediates (Kc=105.9) with broad NIR absorption bands (ε ca. 2000 M ?1 cm?1) and maxima at 1800 ( 1 ?) and 1500 nm ( 1 +). TD‐DFT calculations support a RuIIIRuII formulation for 1 ? with a doublet ground state. The 1 + ion (RuIVRuIII) was calculated with an S=3/2 ground state and the doublet state higher in energy (ΔE=694.6 cm?1). The Mulliken spin density calculations showed little participation of the ligand bridge in the spin accommodation for all paramagnetic species [(μ‐oxa){Ru(acac)2}2]n, n=+1, 0, ?1, and, accordingly, the NIR absorptions were identified as metal‐to‐metal (intervalence) charge transfers. Whereas only one such NIR band was observed for the RuIIIRuII (4d5/4d6) system 1 ?, the RuIVRuIII (4d4/4d5) form 1 + exhibited extended absorbance over the UV/Vis/NIR range.  相似文献   

16.
The mechanism of O2 evolution from water catalyzed by a series of mononuclear aquaruthenium complexes, [Ru(terpy)(bpy)(OH2)]2+, [Ru(tmtacn)(R2bpy)(OH2)]2+ (R=H, Me, and OMe; R2bpy=4,4′‐disubstituted‐2,2′‐bipyridines), and [Ru(tpzm)(R2bpy)(OH2)]2+ (R=H, Me, and OMe), is investigated, where terpy=2,2′:6′,2′′‐terpyridine, bpy=2,2′‐bipyridine, tmtacn=1,4,7‐trimethyl‐1,4,7‐triazacyclononane, and tpzm=tris(1‐pyrazolyl)methane. The kinetics of O2 evolution is investigated as a function of either the catalyst concentration or the oxidant concentration by employing Ce(NH4)2(NO3)6 as an oxidant; these catalysts can be classified into two groups that have different rate laws for O2 evolution. In one class, the rate of O2 evolution is linear to both the catalyst and Ce4+ concentrations, as briefly reported for [Ru(terpy)(bpy)(OH2)]2+ (S. Masaoka, K. Sakai, Chem. Lett. 2009 , 38, 182). For the other class, [Ru(tmtacn)(R2bpy)(OH2)]2+, the rate of O2 evolution is quadratic to the catalyst concentration and independent of the Ce4+ concentration. Moreover, the singlet biradical character of the hydroxocerium(IV) ion was realized by experimental and DFT investigations. These results indicate that the radical coupling between the oxygen atoms of a RuV?O species and a hydroxocerium(IV) ion is the key step for the catalysis of [Ru(terpy)(bpy)(OH2)]2+ and [Ru(tpzm)(R2bpy)(OH2)]2+, while the well‐known oxo‐oxo radical coupling among two RuV?O species proceeds in the catalysis of [Ru(tmtacn)(R2bpy)(OH2)]2+. This is the first report demonstrating that the radical character provided by the hydroxocerium(IV) ion plays a crucial role in the catalysis of such ruthenium complexes in the evolution of O2 from water.  相似文献   

17.
The complex series [Ru(pap)(Q)2]n ([ 1 ]n–[ 4 ]n; n=+2, +1, 0, ?1, ?2) contains four redox non‐innocent entities: one ruthenium ion, 2‐phenylazopyridine (pap), and two o‐iminoquinone moieties, Q=3,5‐di‐tert‐butyl‐N‐aryl‐1,2‐benzoquinonemonoimine (aryl=C6H5 ( 1+ ); m‐(Cl)2C6H3 ( 2+ ); m‐(OCH3)2C6H3 ( 3+ ); m‐(tBu)2C6H3 ( 4 +)). A crystal structure determination of the representative compound, [ 1 ]ClO4, established the crystallization of the ctt‐isomeric form, that is, cis and trans with respect to the mutual orientations of O and N donors of two Q ligands, and the coordinating azo N atom trans to the O donor of Q. The sensitive C? O (average: 1.299(3) Å), C? N (average: 1.346(4) Å) and intra‐ring C? C (meta; average: 1.373(4) Å) bond lengths of the coordinated iminoquinone moieties in corroboration with the N?N length (1.292(3) Å) of pap in 1 + establish [RuIII(pap0)(Q.?)2]+ as the most appropriate electronic structural form. The coupling of three spins from one low‐spin ruthenium(III) (t2g5) and two Q.? radicals in 1 +– 4 + gives a ground state with one unpaired electron on Q.?, as evident from g=1.995 radical‐type EPR signals for 1 +– 4 +. Accordingly, the DFT‐calculated Mulliken spin densities of 1 + (1.152 for two Q, Ru: ?0.179, pap: 0.031) confirm Q‐based spin. Complex ions 1 +– 4 + exhibit two near‐IR absorption bands at about λ=2000 and 920 nm in addition to intense multiple transitions covering the visible to UV regions; compounds [ 1 ]ClO4–[ 4 ]ClO4 undergo one oxidation and three separate reduction processes within ±2.0 V versus SCE. The crystal structure of the neutral (one‐electron reduced) state ( 2 ) was determined to show metal‐based reduction and an EPR signal at g=1.996. The electronic transitions of the complexes 1 n– 4 n (n=+2, +1, 0, ?1, ?2) in the UV, visible, and NIR regions, as determined by using spectroelectrochemistry, have been analyzed by TD‐DFT calculations and reveal significant low‐energy absorbance (λmax>1000 nm) for cations, anions, and neutral forms. The experimental studies in combination with DFT calculations suggest the dominant valence configurations of 1 n– 4 n in the accessible redox states to be [RuIII(pap0)(Q.?)(Q0)]2+ ( 1 2+– 4 2+)→[RuIII(pap0)(Q.?)2]+ ( 1 +– 4 +)→[RuII(pap0)(Q.?)2] ( 1 – 4 )→[RuII(pap.?)(Q.?)2]? ( 1 ?– 4 ?)→[RuIII(pap.?)(Q2?)2]2? ( 1 2?– 4 2?).  相似文献   

18.
19.
The reaction of Ru3(CO)10(dotpm) ( 1 ) [dotpm = (bis(di‐ortho‐tolylphosphanyl)methane)] and one equivalent of L [L = PPh3, P(C6H4Cl‐p)3 and PPh2(C6H4Br‐p)] in refluxing n‐hexane afforded a series of derivatives [Ru3(CO)9(dotpm)L] ( 2 – 4 ), respectively, in ca. 67–70 % yield. Complexes 2 – 4 were characterized by elemental analysis (CHN), IR, 1H NMR, 13C{1H} NMR and 31P{1H} NMR spectroscopy. The molecular structures of 2 , 3 , and 4 were established by single‐crystal X‐ray diffraction. The bidentate dotpm and monodentate phosphine ligands occupy equatorial positions with respect to the Ru triangle. The effect of substitution resulted in significant differences in the Ru–Ru and Ru–P bond lengths.  相似文献   

20.
We present the results from a reactivity study of the binary anion (TlBi3)2? towards Group 12 metal compounds MPh2 (M=Zn, Cd, Hg) to gain access to coordination compounds of polycyclic polypnictide molecules such as Bi73? or Bi113?. The coordination chemistry of these polybismuthide cages has been unprecedented to date, while it has been known for a long time for the lighter Group 15 anions Pn73? (Pn=P, As, Sb). The use of (TlBi3)2?, previously shown to release Tl under certain conditions in situ, resulted in the formation of the first heterometallic polyanion in which a nortricyclane‐type polybismuthide coordinates a transition‐metal atom, [(Bi7)Cd(Bi7)]4?. Reactions with the lighter Group 12 metal precursor yielded the uncommon ternary cluster [(Bi6)Zn3(TlBi5)]4?, most likely representing a reaction intermediate, and at the same time hinting at the formation of the nortricyclane‐shaped cage. Quantum‐chemical studies provide deeper insight into the stability trends of the [(E7)M(E7)]4? anion family and reveal a complex bonding situation in [(Bi6)Zn3(TlBi5)]4?, which features both localized and multi‐center bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号