首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-step optical resonance is used to execute state-selected transitions from the ground state of ICl to two van der Waals states, b(Ω = 1) and b′(Ω = 2), both of which correlate with the second dissociation limit, I(2P32) + Cl(2P12), of ICl. Since the B(0+) state also belongs to this limit, three out of five states converging to I + Cl1 are now accounted for. Principal constants of these states are: b′(2): Te = 18275.84, ωe = 31.093, ωexe = 1.672, ωeye = 0.0070, Be = 0.034834, αe = .001587, and De = 164.09 cm?1; b(1): Te = 18273.30, ωe = 26.75, ωexe = 0.882, Be = 0.03579, q = 0.00084, and De = 166.63 cm?1. In both states the equilibrium distance is near 4.2 Å, slightly greater than the sum of van der Waals contact radii, rI + rCl = 3.95 A?. The large value of q in the b(1) state indicates that, in the basis set |jajbjΩ (a = I, b = Cl, j = ja + jb) the b(1) and b′(2) states belong to j = 1 and j = 2 “complexes,” respectively.  相似文献   

2.
Angular distributions of six polarization transfer coefficients Kxx′(θ), kxz′(θ), Kzx?(θ), Kzz?(θ), and Kyyy?(θ); of the four analyzing powers Ay(θ), Axx(θ), Ayy(θ), and Azz(θ); and of the polarization function Pý(θ), have been measured atEd = 10.00 MeV for the reaction 2H(d, n)3He. Measurements were made for neutron lab angles between 0° and 80° in 10° steps. Additionally the y-axis associated quantities were measured at θ1ab = 99°. Most of the measured coefficients are large at some angles and all show considerable variation with angle.  相似文献   

3.
In lattice gauge theory, many computations such as the strong coupling expansions, mean field theory, or the few plaquette models require the evaluation of the one-link integral in the presence of an arbitrary N × N complex matrix source (J). For SU(N) gauge theories, we express our general solution to the external field problem as an integral over the maximal abelian subgroup [U(1)]N?1
dUe?r(J+U+U+J)=∫i=1Ndøp(Σøi)eS0+InG
where S0 = 2Σkzk cos(φk ? θ), zj are eigenvalues of √JJ+, e2iNθ=detJ/detJ+, and G is an appropriate jacobian determinant. Our explicit solution follows from differential Schwinger-Dyson equations cast in a separable form by using fermionic variables, and the special cases of N = 2, 3 and ∞ agree with earlier derivations.  相似文献   

4.
A millimeter-wave spectrometer having a sensitivity of 4 × 10?10 cm?1 in the 2-mm region has been constructed for observation of extremely weak millimeter-wave spectra of gases. It has been used to measure JJ, K = 0 ← 3 transitions in PH3 and JJ, K = 0 ← 3 as well as K = ±1 ← ±4 transitions in PD3. The B0 and C0 spectral constants (in MHz) are: for PH3, B0 = 133 480.15 ± 0.12 and C0 = 117 488.85 ± 0.16; for PD3, B0 = 69 471.10 ± 0.03 and C0 = 58 974.37 ± 0.05. The effective ground-state values obtained for the bond angle and bond length are: for PH3, r0 (A?) = 1.4200 and α0(o) = 93.345; for PD3, r0 (A?) = 1.4176 and α0(o) = 93.359. The corresponding zero-point-average values were calculated to be: for PH3, rz (A?) = 1.42699 ± 0.0002 and αz(o) = 93.2287; for PD3, rz (A?) = 1.42265 ± 0.0001 and αz(o) = 93.2567 ± 0.004. For both species, the equilibrium values are re (A?) = 1.41159 ± 0.0006 and αe(o) = 93.328 ± 0.02.  相似文献   

5.
A weak emission spectrum of I2 near 2770 Å is reanalyzed and found to to minate on the A(1u3Π) state. The assigned bands span v″ levels 5–19 and v′ levels 0–8. The new assignment is corroborated by isotope shifts, band profile simulations, and Franck-Condon calculations. The excited state is an ion-pair state, probably the 1g state which tends toward I?(1S) + I+(3P1). In combination with other results for the A state, the analysis yields the following spectroscopic constants: Te = 10 907 cm?1, De = 1640 cm?1, ωe = 95 cm?1, R″e = 3.06 A?; Te = 47 559.1 cm?1, ωe = 106.60 cm?1, R′e = 3.53 A?.  相似文献   

6.
The rz structure of phosgene has been determined by a joint analysis of the electron diffraction intensity and the rotational constants as follows: rz(CO) = 1.1785 ± 0.0026 A?, rz(CCl) = 1.7424 ± 0.0013 A?, ∠z;ClCCl = 111.83 ± 0.11°, where uncertainties represent estimated limits of experimental error. The effective constants representing bond-stretching anharmonicity have been obtained from an analysis of the isotopic differences in the rz structure: a3(CO) = 2.9 ± 0.9 A??1, a3(CCl) = 1.6 ± 0.4 A??1. The equilibrium bond distances have been estimated from the rz structure for the normal species and from the anharmonic constants to be re(CO) = 1.1756 ± 0.0032 A?, re(CCl) = 1.7381 ± 0.0019 A?.  相似文献   

7.
By generalizing fP universality to Regge-particle “scattering” we obtain sdσdt dM2 = F(sM2,t)[1 + M?1 bf(0)bP(0)] for pp → pX, where bf(t) and bP(t) are the f and P Regge residues for, say, pp → pp. This agrees with the recent NAL data.  相似文献   

8.
The model assumes that when two high energy particles collide each behaves as a geometrical object which has a Gaussian density and is spherically symmetric except for the Lorentz-contraction in the incident direction. Folding the two spatial distribution together we obtain the slope (b) of the elastic diffraction peak in terms of the c.m. velocities (βi and βj) and the sizes (Ai and Aj) of the two incident particles. These sizes are assumed to have the experimental s-dependence of σtotπA2 for each reaction. The combined s-dependence of the σtot's and the β's gives the s-dependence of the elastic slope bij(s) = 12(Ai2βi2 + Aj2βj2)σijtot(s)σijtot(∞). This formula agrees with the experimental slope for p-p, p-p, K+-p, K?-p and π±-p elastic scattering from 3 to 1500 GeV/c, with only 3 parameters: Aπ2 = 6.1, AK2 = 3.3 and Ap2 = 10.5 (GeV/c)?2.  相似文献   

9.
The pure rotational spectra of three deuterated ethylenes, CH2CD2, CH2CHD, and cis-CHDCHD, were observed by microwave spectroscopy, and the rotational and centrifugal distortion constants were determined precisely. The dipole moment of CH2CD2 was calculated from the Stark effects to be 0.0091 ± 0.0004 D. From the observed rotational constants the average structure was calculated to be rz(CC) = 1.3391 ± 0.0013 A?, rz(CH) = 1.0869 ± 0.0013 A?, θz(CCH) = 121.28 ± 0.10°, and rz(CH) - rz(CD) = 0.00137 ± 0.00037 A?, where the errors include one standard deviation in the fitting and errors due to an uncertainty (±0.03°) in θz(CCH) - θz(CCD).  相似文献   

10.
A simple formula is derived for the centrifugal distortion constant of a linear triatomic molecule in which one of the chemical bonds is much weaker than the other. The derivation is in complete analogy with the standard semiclassical diatomic derivation and results in the equation DJ = [4Be3(hv)2][1 ? (Bebe)], where Be, ν, and be are, respectively, the triatomic rotational constant, the low stretching frequency, and the rotational constant of the strongly bound diatomic part of the triatomic molecule.  相似文献   

11.
The usual condition for static balance, for two bodies with masses and charges mi and ei (i = 1, 2), is ei=±G12mi. From a post-Newtonian analysis of the two-body problem, an alternate condition for static balance ei=±(Gm1m2)12 has been found. We do not know if this condition is exact beyond the post-Newtonian approximation.  相似文献   

12.
We calculate the effective electron-hole interaction Vre in the presence of an exciton gas, which reads in real space:
Vre(r)=?e2r{1+ i=14(?1)iCiexp(?Zira}
The parameters Ci and Zi are given explicitly for GaAs. For this material, we show the binding energy of the exciton is weakly modified so long as 8πR0?exa03kT?1. (R0, exciton Rydberg, a0 exciyon radius, ?ex exciton density, T temperature).  相似文献   

13.
The resonant 2-photon E(O+g) ← B(O+g) ← X(O+g) transition of I2 vapor has been studied by polarization spectroscopy, leading to a rotational analysis of the ν = 0–15 vibrational levels of the E state. The principal constants determined are Be = 19.9738(42) × 10-3, αe = 5.602(84) × 10-5, γe = 1.02(41) × 10-7, DeJ = 3.040(74) × 10-9cm-1, and re = 3.6470(5) A?.  相似文献   

14.
The temperature dependence of the field emission flicker noise spectral density functions has been investigated for potassium adsorbed on tungsten (112) planes by a probe hole technique. By integration of the spectral density functions W(?) = Bi??gei the noise power (δn2Δ? for different frequency intervals Δ? is obtained. From the exponential temperature dependence of (δn2Δ? noise power “activation energies” qΔ? are determined. Plots of these energies versus coverage show a similar “oscillating” behaviour as recently found for W(?j) or (δn2Δ?j which indicates phase transitions of the adsorbed potassium submonolayers. The noise activation energies are discussed in terms of existing models and a comparison is made between the experimental q values and surface diffusion energies Ed as determined by conventional methods.  相似文献   

15.
The relativistic correction (RC) to the deuteron magnetic moment is calculated using the light-cone dynamics. The restrictions imposed by the angular condition on the electromagnetic current operator of the deuteron are discussed in detail. It is shown that the additive model for the current operator of interacting constituents is consistent with the angular condition only for the two first terms of the expansion of the “good” current component j+ = 12(j0 + jz) in powers of the momentum transfer q. The RC to μd is expressed through the matrix element of the “good” component j+ and is found to be equal to (0.6–0.8) × 10?2 eh?/2mpc for realistic NN potentials. Taking account of RC decreases essentially the discrepancy between the theoretical and experimental values of μd. Possible solutions of the angular condition for squared q-terms of the j+ current component are also discussed.  相似文献   

16.
Assuming an SU(4) group for leptons together with the dynamical equation Pz {z ? z} = 0 (Pz is the projection of the representation z from the direct product z ? z) for the symmetry breaking, we predict: mυe = mυe = 0, memμ ≈ 0 (α) and a Weinberg angle sin2 θw = 14.  相似文献   

17.
The surface plasmon dispersion relation is obtained for a metal with a free electron density given by N(z) = Nb + (Ns ? Nb) exp (?za) for z ? 0 and N = 0 for z < 0. We have used a local theory which includes the effects of retarded fields and found the dispersion relation to be sensitive to the parameters (Ns ? Nb)Nb and a, which characterize our density profile.  相似文献   

18.
The excitation functions of 208Pb(p, p0)208Pb have been measured in the energy range Ep = 14.2 to 17.4 MeV in 50 keV steps at θlab = 120°, 140° and 160°. The isobaric analog resonances of the parent states in 209Pb up to Ex = 2.5 MeV and the optical-model background were fit simultaneously at all energies and angles. The spreading widths and the values of a parameter β2, which measures the isospin purity of the IAR, were determined for the g92, i112, j152, d52, and s12 resonances. An average value of the isospin purity of β2 = 66% was found.  相似文献   

19.
The 0-0, 1-1, 2-2, and 3-3 bands of the A2Π-X2Σ+ transition of the tritiated beryllium monohydride molecule have been observed at 5000 Å in emission using a beryllium hollow-cathode discharge in a He + T2 mixture. The rotational analysis of these bands yields the following principal molecular constants.
A2Π:Be = 4.192 cm?1; re = 1.333 A?
X2Σ:Be = 4.142 cm?1; re = 1.341 A?
ωe′ ? ωe″ = 16.36 cm?1; ωe′Xe′ ? ωe″Xe″ = 0.84 cm?1
From the pure electronic energy difference (EΠ - EΣ)BeT = 20 037.91 ± 1.5 cm?1 and the corresponding previously known values for BeH and BeD, the following electronic isotope shifts are derived
ΔEei(BeH?BeT) = ?4.7 ≠ 1.5cm1, ΔEei(BeH?BeT) = ?1.8 ≠ 1.5cm1
and related to the theoretical approach given by Bunker to the problem of the breakdown of the Born-Oppenheimer approximation.  相似文献   

20.
Excitation functions at θ = 90° have been measured for 16O(3He, γ0?2, 3?5, 6)19Ne, 15N(3He, γ0, 1?4)18F, 14N(3He, γ0, 1,2,3)17F, and 20Ne(3He, γ0 + 1)23Mg, in the range E3He = 3–19 MeV. The first reaction has also been studied at θ = 40°. Excitation functions at 90° have also been measured for 40Ca(3He, γ0?2)43Ti for E3He = 4–17 MeV and 4He(3He, γ0 + 1)7Be for E3He = 19–26 MeV. Angular distributions have been measured for the first four reactions.For the most excitation functions, a broad peak is observed, several MeV wide, centred at about Ex≈ 20 MeV. Superimposed on this, in some cases, are narrower peaks, with width ≈ 1 MeV. Energies and widths have been extracted for all resonances.Cluster-model calculations have been carried out, using methods similar to those which have proved successful for low-lying states in A= 18–19 nuclei. No satisfactory correspondence with the present results was found. The shell model has been used to calculate Γ3He and Γγ for 1?ω excitations in the final nuclei. These generally show good agreement with the trends of the experimental data. The results are consistent with the excitation of the giant dipole resonance in 3He capture, but much more weakly than in proton capture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号