首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 248 毫秒
1.
2.
3.
We have reported previously that an iron(III) complex supported by an anionic pentadentate monoamido ligand, dpaqH (dpaqH=2‐[bis(pyridin‐2‐ylmethyl)]amino‐N‐quinolin‐8‐yl‐acetamido), promotes selective C? H hydroxylation with H2O2 with high regioselectivity. Herein, we report on the preparation of FeIII–dpaq derivatives that have a series of substituent groups at the 5‐position of a quinoline moiety in the parent ligand dpaqH (dpaqR, R: OMe, H, Cl, and NO2), and examine them with respect to their catalytic activity in C? H hydroxylation with H2O2. As the substituent group becomes more electron‐withdrawing, both the selectivity and the turnover number increase, but the selectivity of epoxidation shows the opposite trend.  相似文献   

4.
The incorporation of iodine atoms onto the boron vertices of the o‐carborane framework causes, according to spectroscopic data, a uniform increase in the acidic character of the Cc? H (Cc= cluster carbon) vertices, whereas the incorporation of methyl groups onto the boron vertices of the o‐carborane framework reduces their acidity. Methyl groups when attached to boron are electron‐withdrawing in boron clusters, whereas iodine atoms bonded to boron act as electron donors. This has been proven on B‐methyl and B‐iodinated o‐carboranes with NMR spectroscopy measurements and DFT calculations of natural bond orbital (NBO) charges, which show a cumulative buildup of positive cluster‐only total charge (CTC) on B‐methyl o‐carboranes and a cumulative buildup of negative cluster‐only total charge for B‐iodinated o‐carboranes.  相似文献   

5.
Many iron‐containing enzymes involve metal–oxygen oxidants to carry out O2‐dependent transformation reactions. However, the selective oxidation of C H and CC bonds by biomimetic complexes using O2 remains a major challenge in bioinspired catalysis. The reactivity of iron–oxygen oxidants generated from an FeII–benzilate complex of a facial N3 ligand were thus investigated. The complex reacted with O2 to form a nucleophilic oxidant, whereas an electrophilic oxidant, intercepted by external substrates, was generated in the presence of a Lewis acid. Based on the mechanistic studies, a nucleophilic FeII–hydroperoxo species is proposed to form from the benzilate complex, which undergoes heterolytic O O bond cleavage in the presence of a Lewis acid to generate an FeIV–oxo–hydroxo oxidant. The electrophilic iron–oxygen oxidant selectively oxidizes sulfides to sulfoxides, alkenes to cis‐diols, and it hydroxylates the C H bonds of alkanes, including that of cyclohexane.  相似文献   

6.
Two sets of o‐carborane derivatives incorporating fluorene and anthracene fragments as fluorophore groups have been successfully synthesized and characterized, and their photophysical properties studied. The first set, comprising fluorene‐containing carboranes 6 – 9 , was prepared by catalyzed hydrosilylation reactions of ethynylfluorene with appropriate carboranylsilanes. The compound 1‐[(9,9‐dioctyl‐fluorene‐2‐yl)ethynyl]carborane ( 11 ) was synthesized by the reaction of 9,9‐dioctyl‐2‐ethynylfluorene and decaborane (B10H14). Furthermore, reactions of the lithium salt of 11 with 1 equivalent of 4‐(chloromethyl)styrene or 9‐(chloromethyl)anthracene yielded compounds 12 and 13 . Members of the second set of derivatives, comprising anthracene‐containing carboranes, were synthesized by reactions of monolithium or dilithium salts of 1‐Me‐1,2‐C2B10H11, 1‐Ph‐1,2‐C2B10H11, and 1,2‐C2B10H12 with 1 or 2 equivalents of 9‐(chloromethyl)anthracene, respectively, to produce compounds 14 – 16 . In addition, 2 equivalents of the monolithium salts of 1‐Me‐1,2‐C2B10H11 (Me‐o‐carborane) and 1‐Ph‐1,2‐C2B10H11 (Ph‐o‐carborane) were reacted with 9,10‐bis(chloromethyl)anthracene to produce compounds 17 and 18 , respectively. Fluorene derivatives 6 – 9 exhibit moderate fluorescence quantum yields (32–44 %), whereas 11 – 13 , in which the fluorophore is bonded to the Ccluster (Cc), show very low emission intensity (6 %) or complete fluorescence quenching. The anthracenyl derivatives containing the Me‐o‐carborane moiety exhibit notably high fluorescence emissions, with ?F=82 and 94 %, whereas their Ph‐o‐carborane analogues are not fluorescent at all. For these compounds, we have observed a correlation between the Cc?Cc bond length and the fluorescence intensity in CH2Cl2 solution, comparable to that observed for previously reported styrene‐containing carboranes. Thus, our hypothesis is that for systems of this type the fluorescence may be tuned and even predicted by changing the substituent on the adjacent Cc.  相似文献   

7.
A series of new titanium(IV) complexes with o‐metalated arylimine and/or cis‐9,10‐dihydrophenanthrenediamide ligands, [o‐C6H4(CH?NR)TiCl3] (R=2,6‐iPr2C6H3 ( 3 a ), 2,6‐Me2C6H3 ( 3 b ), tBu ( 3 c )), [cis‐9,10‐PhenH2(NR)2TiCl2] (PhenH2=9,10‐dihydrophenanthrene; R=2,6‐iPr2C6H3 ( 4 a ), 2,6‐Me2C6H3 ( 4 b ), tBu ( 4 c )), [{cis‐9,10‐PhenH2(NR)2}{o‐C6H4(HC?NR)}TiCl] (R=2,6‐iPr2C6H3 ( 5 a ), 2,6‐Me2C6H3 ( 5 b ), tBu ( 5 c )), have been synthesised from the reactions of TiCl4 with o‐C6H4(CH?NR)Li (R=2,6‐iPr2C6H3, 2,6‐Me2C6H3, tBu). Complexes 4 and 5 were formed unexpectedly from the reactions of TiCl4 with two or three equivalents of the corresponding o‐C6H4(CH?NR)Li followed by sequential intramolecular C? C bond‐forming reductive elimination and oxidative coupling reactions. Attempts to isolate the intermediates, [{o‐C6H4(CH?NR)}2TiCl2] ( 2 ), were unsuccessful. All complexes were characterised by 1H and 13C NMR spectroscopy, and the molecular structures of 3 a , 4 a – c , 5 a , and 5 c were determined by X‐ray crystallography.  相似文献   

8.
Various 1,4‐diols are easily accessible from alkenes through iron‐catalyzed aerobic hydration. The reaction system consists of a user‐friendly iron phthalocyanine complex, sodium borohydride, and molecular oxygen. Furthermore, the effect of additional ligands on the iron complex was examined for a model reaction. The second hydroxy group is installed by direct C(sp3) H oxygenation, which is based on a [1,5] hydrogen shift process of a transient alkoxy radical that is formed by formal hydration of the olefin.  相似文献   

9.
No Fe‐ar : Iron catalyzes an imine‐directed C? H bond activation to introduce an ortho‐aryl group to an acetophenone‐derived imine using a diarylzinc reagent (see scheme), whereas palladium catalyzes the conventional substitution reaction . The title reaction features mild and selective C? H bond activation in the presence of aryl bromide, chloride, or sulfonate groups, and 1,2‐dichloroisobutane is essential to achieve such selectivity.

  相似文献   


10.
Ring leader : PtCl2 catalyzes intramolecular cyclization of o‐isopropyl or o‐benzyl aryl alkynes to give substituted indene derivatives with good yields and high selectivity. This reaction appears to proceed through an sp3 C? H activation and 1,4‐hydrogen migration pathway (see scheme).

  相似文献   


11.
12.
Direct arylation of the ortho‐C? H bond of an aryl pyridine or an aryl imine with an aryl Grignard reagent has been achieved by using an iron‐diamine catalyst and a dichloroalkane as an oxidant in a short reaction time (e.g., 5 min) under mild conditions (0 °C). The use of an aromatic co‐solvent, such as chlorobenzene and benzene, and slow addition of the Grignard reagent are essential for the high efficiency of the reaction. The present arylation reaction has distinct merits over the previously developed reaction that used an arylzinc reagent, such as its reaction rate and atom economy. Selective C? H bond activation occurs in the presence of a leaving group, such as a tosyloxy, chloro, and bromo group. Studies on a stoichiometric reaction and kinetic isotope effects shed light on the reaction intermediate and the C? H bond‐activation step.  相似文献   

13.
Naheliegende Alternative : Eine eisenkatalysierte Imin‐gesteuerte C‐H‐Aktivierung mit einem Diarylzinkreagens führt eine Arylgruppe in ortho‐Stellung an einem von Acetophenon abgeleiteten Imin ein (siehe Schema); mit einem Palladiumkatalysator tritt dagegen eine gewöhnliche Substitution auf. Die Titelreaktion ist eine milde C‐H‐Aktivierung, die in Gegenwart von 1,2‐Dichlorisobutan mit Arylbromiden, ‐chloriden oder ‐sulfonaten selektiv verläuft.

  相似文献   


14.
Three of a kind : Vicinal tricarbonyl compounds undergo C? C cleavage mediated by ferric ions (see scheme). The observed cleavage of ninhydrin and dehydroascorbic acid has relevance for amino acid detection and the metabolism of vitamin C.

  相似文献   


15.
Drei von einer Sorte : Vicinale Tricarbonyl‐Verbindungen gehen Eisen(III)‐vermittelte C‐C‐Spaltungen ein (siehe Schema). Die Ergebnisse sind relevant für den Aminosäurenachweis durch Ninhydrin und für den Vitamin‐C‐Stoffwechsel.

  相似文献   


16.
17.
18.
The influx of new psychoactive substances (NPS) has created a need for improved methods for drug testing in toxicology laboratories. The aim of this work was to design, validate and apply a multi‐analyte liquid chromatography–high‐resolution mass spectrometry (LC–HRMS) method for screening of 148 target analytes belonging to the NPS class, plant alkaloids and new psychoactive therapeutic drugs. The analytical method used a fivefold dilution of urine with nine deuterated internal standards and injection of 2 μl. The LC system involved a 2.0 μm 100 × 2.0 mm YMC‐UltraHT Hydrosphere‐C18 column and gradient elution with a flow rate of 0.5 ml/min and a total analysis time of 6.0 min. Solvent A consisted of 10 mmol/l ammonium formate and 0.005% formic acid, pH 4.8, and Solvent B was methanol with 10 mmol/l ammonium formate and 0.005% formic acid. The HRMS (Q Exactive, Thermo Scientific) used a heated electrospray interface and was operated in positive mode with 70 000 resolution. The scan range was 100–650 Da, and data for extracted ion chromatograms used ± 10 ppm tolerance. Product ion monitoring was applied for confirmation analysis and for some selected analytes also for screening. Method validation demonstrated limited influence from urine matrix, linear response within the measuring range (typically 0.1–1.0 μg/ml) and acceptable imprecision in quantification (CV <15%). A few analytes were found to be unstable in urine upon storage. The method was successfully applied for routine drug testing of 17 936 unknown samples, of which 2715 (15%) contained 52 of the 148 analytes. It is concluded that the method design based on simple dilution of urine and using LC–HRMS in extracted ion chromatogram mode may offer an analytical system for urine drug testing that fulfils the requirement of a ‘black box’ solution and can replace immunochemical screening applied on autoanalyzers. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
We report the synthesis, morphology, and field‐effect‐transistor (FET) characteristics of new acceptor–donor–acceptor conjugated materials that consist of diketopyrrolopyrrole (DPP) acceptor groups and one of four different thiophene moieties, that is, dithiophene (2T), thieno[3,2‐b]‐thiophene (TT), dithieno[3,2‐b:2′,3′‐d]‐thiophene (DTT), and 5,5′′′‐di‐(2‐ethylhexyl)‐[2,3′;5′,2′′;4′′,2′′′]quaterthiophene (4T). The optical band gaps of the as‐prepared materials are smaller than 1.7 eV, which is attributed to the strong intramolecular charge transfer and the backbone coplanarity of the thiophene moieties. The order of both crystallinity and FET mobility (×10?2–×10?4 cm2 V?1 s?1) is TT2DPP > 4T2DPP > 2T2DPP >DTT2DP, which differ in the structure of the π‐conjugated cores and core symmetry. Well‐ordered intermolecular chain packing was confirmed by the GIXD and AFM results. In particular, the FET hole mobility of TT2DPP was further improved to 0.1 cm2 V?1 s?1, which was attributed to the well‐interconnected structure through solution‐shearing. These experimental results suggest the potential applications of the new DPP? thiophene? DPP conjugated materials for organic electronic devices.  相似文献   

20.
A joint experimental and theoretical investigation of the fragmentation behaviour of energised [M-H](-) anions from selected phosphorylated peptides has confirmed some of the most complex rearrangement processes yet to be reported for peptide negative ions. In particular: pSer and pThr (like pTyr) may transfer phosphate groups to C-terminal carboxyl anions and to the carboxyl anion side chains of Asp and Glu, and characteristic nucleophilic/cleavage reactions accompany or follow these rearrangements. pTyr may transfer phosphate to the side chains of Ser and Thr. The reverse reaction, namely transfer of a phosphate group from pSer or pThr to Tyr, is energetically unfavourable in comparison. pSer can transfer phosphate to a non-phosphorylated Ser. The non-rearranged [M-H](-) species yields more abundant product anions than its rearranged counterpart. If a peptide containing any or all of Ser, Thr and Tyr is not completely phosphorylated, negative-ion cleavages can determine the number of phosphated residues, and normally the positions of Ser, Thr and Tyr, but not which specific residues are phosphorylated. This is in accord with comments made earlier by Lehmann and coworkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号