首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterogeneous recombination of O + CO → CO2 over a solid CO2 surface at 77 K was investigated. A modified discharge flow setup was used to generate low O atom concentrations by the reaction N + NO → N2 + O(3P). The O atom concentrations were measured upstream and downstream of the solid CO2 substrate using resonance fluorescence by monitoring the unresolved 130.3 nm triplet transition 3S1 ? 3P2,1,0 at the two fixed points. CO2 formed was determined by measuring the β activity from C14O2 produced from CO containing C14O as a reactant gas. The CO2 formation was found to be first order in CO and independent of O atom concentration over the entire range of 4.3 × 1012 to 1.9 × 1014 cm?3 and 1.2 × 1011 to 5.6 × 1012 cm?3 for CO and O respectively. The first order recombination coefficient, λCO was found to be 1.4 (±.38) × 10?5.  相似文献   

2.
Summary Negative ion mass spectra for 3 aliphatic and 4 aromatic isocyanates have been obtained by low pressure chemical ionization, using CH4, CO2 and N2O as reagent gases. All compounds furnished intense anions at m/z 42. With CH4, quasi-molecular anions were observed at m/z M+1 for aliphatic and m/z M+1 and M–1 for aromatic isocyanates. With N2O, anionic substitution products at m/z M+15 and M+30 were observed, and with CO2 and N2O, peaks at m/z M–12 could be detected for all aromatic isocyanates. Studies with 13CO2 and C18O2 as reagent gases showed that the anions at m/z M–12 and M+15 correspond to [M–CO+O] and [M–H+O], respectively.
Negativionen-Massenspektrometrie mit chemischer Ionisierung von einigen Isocyanaten
Zusammenfassung Die Negativionen-Massenspektren von 3 aliphatischen und 4 aromatischen Isocyanaten wurden mittels chemischer Ionisation bei tiefem Quellendruck aufgenommen, und zwar mit den Reagensgasen CH4, CO4 und N2O. Alle Verbindungen lieferten intensive Anionen mit m/z 42. Mit CH4 erhielten wir die quasi-molekularen Anionen M+1 für aliphatische sowie M+1 und M–1 für aromatische Isocyanate. Das Reagens N2O ergab die anionischen Substitutionsprodukte M+15 und M+30. Sowohl CO2 als auch N2O führten mit aromatischen Isocyanaten zur Bildung von M–12 Anionen. Versuche mit 13CO2 und mit C18O2 als Reagensgase zeigten, daß die Anionen M–12 und M+15 den Ionen [M–CO+O] und [M–H+O] entsprechen.
  相似文献   

3.
A chemical laser has been constructed in which simultaneous output is obtained from both CO and CO2 laser species at 5 and 10 μm, respectively. Excitation of CO2 is via energy transfer from vibrationally excited CO (CO2) produced in the photolytically initiated reaction: O + CS → CO2 + S. Gain measurements at the CO2 laser frequencies are also reported.  相似文献   

4.
The mechanism of the spin‐forbidden quenching process O(1D) + CO2(1Σ) → O(3P) + CO2(1Σ) was investigated by ab initio quantum chemistry methods. The calculations showed the singlet potential surface [O(1D)+CO2] is attractive where a strongly bound intermediate complex CO3 is formed in the potential basin without a transition state, whereas the complex CO3 that is formed on the triplet surface [O(3P)+CO3] must overcome a barrier. The complex channel was documented by searching minimum energy intersection points in the region of the bound complex CO3 and calculating spin‐orbit coupling at the point. A direct channel was proposed by a study of cross point of singlet and triplet PESs with different collision angles and calculations of spin‐orbit coupling at those cross points in a nonbound region of the [O(1D)+CO3] system. The mechanism of the energy transfer is discussed on the basis of the theoretical results. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

5.
The self-radiolysis of CO2 in excess tritium (3H2) has been studied at pressures of 0.1 to 1.0 atm, temperatures of ?80° to +100°C, and in the presence of added H2O, He, or Ar. The primary products of decomposition are CO and 3H2O. Secondary products are C3H4, C23H4, and a white polymer. The rates of disappearance of CO2 and formation of products and G-;values were measured. The disappearance of CO2 initially obeys first-order kinetics, then slows down with time at a rate depending upon the initial pressure of 3H2. The initial rates are proportional to pressures of CO2 and 3H2. They are independent of temperature, decreased by addition of H2O vapor, and increased by addition of He or Ar. The proposed mechanism of decomposition of CO2 and formation of products involves ionization of CO2 followed by dissociative recombination forming CO and O. Then the O reacts with a hydrogen-containing species forming OH and H2O, and a back reaction forms CO2 from CO and OH.  相似文献   

6.
Intramolecular vibration—vibration energy transfer cross sections have been calculated for CO2(0001) + H2/D2 → CO2(1110) + H2/D2, → CO2(1000) + H2/D2, and → CO2(2000) + H2/D2 based on the mechanism that the energy mismatch is transferred to the translational motion. For CO2 + H2, the calculated cross section for CO2(0001) + H2 → CO2(1000) + H2 is in good agreement with experimental data. Cross sections for the processes (0001 → 111O) and (0001 → 2000) are found to be too small compared with experimental data. For CO2 + D2, (0001 → 1000) is also the most important process and appears to represent experimental data at room temperature. The sum of three cross sections of CO2 + H2 is always greater than that of CO2 + D2 over the temperature range of 100–2500 K.  相似文献   

7.
The vibrational relaxation time for CO2(v3) + O(3P) has been measured by laser fluorescence. The observed value, βCO2.O = 0.21 ± 0.04 μsec, is an order of magnitude lower than the relaxation time for self-collisions.  相似文献   

8.
The characteristic collision-induced dissociations of [M ? H]? ions of dipeptides and tripeptides involve proton transfer to the carboxylate centre as a prelude to fragmentation. Dipeptides show the process NH2CH(R1)CONHCH(R2)CO2? → NH2C(R1)CONHCH(R2)CO2H → ?NHCH(R2)CO2H + NH2C(R1)?C?O (R = H or alkyl) while tripeptides show the analogous processes NH2CH(R1)CONHCH(R2)CONHCH(R3)CO2? → NH2CH(R1)CONHC(R2)CONHCH(R3)CO2? → NHCH(R3)CO2H + NH2CH(R1)CONHC(R2)?C?O and NH2CH(R1)CONHCH(R2)? CONHCH(R3)CO2? → NH2C(R1)CONHCH(R2)CONHCH(R3)CO2H → ?NHCH(R2)CONHCH(R3)CO2H + NH2C(R1)?C?O. These fragmentations provide ready identification of the peptide.  相似文献   

9.
We investigate activation of carbon dioxide by singly charged hydrated magnesium cations Mg .+(H2O)n, through infrared multiple photon dissociation (IRMPD) spectroscopy combined with quantum chemical calculations. The spectra of [MgCO2(H2O)n].+ in the 1250–4000 cm?1 region show a sharp transition from n=2 to n=3 for the position of the CO2 antisymmetric stretching mode. This is evidence for the activation of CO2 via charge transfer from Mg .+ to CO2 for n≥3, while smaller clusters feature linear CO2 coordinated end‐on to the metal center. Starting with n=5, we see a further conformational change, with CO2.? coordination to Mg2+ gradually shifting from bidentate to monodentate, consistent with preferential hexa‐coordination of Mg2+. Our results reveal in detail how hydration promotes CO2 activation by charge transfer at metal centers.  相似文献   

10.
Quantum mechanical calculations have been used to study the reaction mechanism of human carbonic anhydrase-catalyzed hydration of CO2. This reaction is responsible for fast metabolism of CO2 in the human body. For each of the reaction steps, possible catalytic effects of active site residues are examined. The pertinent results are as follows. (1) For CO2 binding, the experimentally observed 2.5 cm?1 frequency shift of the asymmetic stretching frequency between measurements taken in the aqueous solution and in the enzyme is reproduced in our theoretical calculations. Our results suggest that CO2 binds to the zinc ion within the hydrophobic pocket. (2) No energy barrier is found for the nucleophilic attack from Zn2+?bound OH? to C of CO2 to form Zn2+?bound HCO3?. (3) For the internal proton transfer within zinc-bound HCO3?, the barrier of 35.6 kcal/mol for the direct internal proton transfer is reduced to 3.5 and 1.4 kcal/mol, respectively, when one or two water molecules are included for proton relay. (4) Displacement of Zn2+?bound HCO3? by H2O is facilitated by the presence of the negatively charged Glu 106-Thr 199 chain and by the association and the subsequent ionization of a fifth water ligand. (5) For the intramolecular proton transfer between Zn2+-bound H2O and His 64, the Zn2+ ion lowers the pKa of Zn2+?bound water and repels the proton. His 64, or a similar proton receptor with a larger proton affinity than H2O, functions as proton receiver; and the active site water molecules visualized by x-ray crystallography are important for the proton relay function. In summary, it is demonstrated that in order to achieve effective catalysis, a sequence of precisely coordinated catalytic events among all participating catalytic elements in the enzyme's active site is essential.  相似文献   

11.
The effects of proton irradiation on mixed H2O + CO2 (1:1) ices at 20 K were investigated by infrared and mass spectroscopy. Infrared bands due to several radical (HCO, CO3) and molecular (CO) product species were identified. In addition, several new broad and complex i.r. features were observed. On slow warming, the broad features evolved into a 215–250 K residual film whose absorptions have been tentatively assigned to carbonic acid. This identification agrees with the spectral data for irradiated H2O + 13CO2 ice and the results of an approximate normal coordinate analysis.  相似文献   

12.
Three new isostructural 3D lanthanide metal–organic frameworks (Ln‐MOFs), {H[LnL(H2O)]?2 H2O}n ( 1‐Ln ) (Ln=Eu3+, Gd3+ and Tb3+), based on infinite lanthanide‐carboxylate chains were constructed by employing an ether‐separated 5,5′‐oxydiisophthalic acid (H4L) ligand under solvothermal reaction. 1‐Eu and 1‐Tb exhibit strong red and green emission, respectively, through the antenna effect, as demonstrated through a combination of calculation and experimental results. Moreover, a series of dichromatic doped 1‐EuxTby MOFs were fabricated by introducing different concentrations of Eu3+ and Tb3+ ions, and they display an unusual variation of luminescent colors from green, yellow, orange to red. 1‐Eu with channels decorated by ether O atoms and the open metal sites displays good performance for CO2 capture and conversion between CO2 and epoxides into cyclic carbonates.  相似文献   

13.
Photodissociation reaction CO?3 + hv → CO2 + O? has been observed at seven photon energies between 2.35 and 2.71 eV using a drift tube mass spectrometer and an argon ion laser. The total cross sections for the destruction of CO?3 due to photons of these energies have been measured, and it is concluded that essentially all of this destruction is due to photodissociation. The photodestruction of CO?3.H2O has also been observed at four photon energies.  相似文献   

14.
《Chemical physics letters》1985,122(5):489-492
The rate constant for the bimolecular reaction CO + N2O → CO2 + N2 was determined by comparison of calculated infrared emission profiles of CO2 with those observed in shock-tube experiments in the temperature range 1350–2100 K for CO-N2O-He-Ar mixtures. The rate constant was found to be k1 = 3.2 × 1011exp(−85 kJ/RT) cm3 mol−1 s−1.  相似文献   

15.
CF3O2CF3 was photolyzed at 254 nm in the presence of CO in 760 torr N2 or air at 296 K in a static reactor. In N2, the products CF3OC(O)C(O)OCF3 and CF3OC(O)O2C(O)OCF3 were detected by FTIR spectroscopy. In air, the only observed products were CF2O and CO2 and a chain process, initiated by CF3O, was invoked for the conversion of CO to CO2. From both product studies, a mechanism for the CF3O initiated oxidation of CO was derived, involving the addition reaction CF3O2 + CO → CF3OC(O). The rate constant for the reaction CF3O + CO at 296 K at a total pressure of 760 torr air was determined to be k(CF3O + CO) = (5.0 ± 0.9) × 10−14 cm3 molecule−1 s−1. © 1997 John Wiley & Sons, Inc.  相似文献   

16.
Taking account the bands νa(O12CO) and νa(O13CO) (in natural abundance) due to linear species, the study by FT-infrared spectroscopy of the CO2 adsorption on ZnO has shown particular sites which can be described as Zn2+ ions with two vacancies, with a reactive oxygen ion in an adjacent position. Using the usual probe molecules (CO, acetonitrile, ammonia, pyridine), we have compared the Lewis acidity of ZnO and ZnO which has been pretreated with CO2. This preadsorption causes an increase of the Lewis acidity. Moreover we have found that it prevents the dissociative adsorption of acetonitrile, ammonia, pyridine, propene and butenes. The model site described above well accounts for these results. It is concluded that the increase of the acidity due to CO2 preadsorption is related to the formation of bidentate carbonates.  相似文献   

17.
The rate constants for the reaction of CN with N2O and CO2 have been measured by the laser dissociation/laser-induced fluorescence (two-laser pump-probe) technique at temperatures between 300 and 740 K. The rate of CN + N2O was measurable above 500 K, with a least-squares averaged rate constant, k = 10−11.8±0.4 exp(−3560 ± 181/T) cm3/s. The rate of CN + CO2, however, was not measurable even at the highest temperature reached in the present work, 743 K, with [CO2] ⩽ 1.9 × 1018 molecules/cm3. In order to rationalize the observed kinetics, quantum mechanical calculations based on the BAC-MP4 method were performed. The results of these calculations reveal that the CN + N2O reaction takes place via a stable adduct NCNNO with a small barrier of 1.1 kcal/mol. The adduct, which is more stable than the reactants by 13 kcal/mol, decomposes into the NCN + NO products with an activation energy of 20.0 kcal/mol. This latter process is thus the rate-controlling step in the CN + N2O reaction. The CN + CO2 reaction, on the other hand, occurs with a large barrier of 27.4 kcal/mol, producing an unstable adduct NCOCO which fragments into NCO + CO with a small barrier of 4.5 kcal/mol. The large overall activation energy for this process explains the negligibly low reactivity of the CN radical toward CO2 below 1000 K. Least-squares analyses of the computed rate constants for these two CN reactions, which fit well with experimental data, give rise to for the temperature range 300–3000 K.  相似文献   

18.
The rates of decay of O(3P) atoms in H2/CO/N2 mixtures in a discharge flow system have been measured, using O + CO chemiluminescence. The mechanism is: O + H2 → OH + H (1), O + OH → O2 + H (2), CO + OH → CO2 + H (3). At 425 K, k2/k3 = 260 ± 20; literature values of k3 combine to yield k2 = (2.65 ± 0.52) × 1010 dm3 mol?1 s?1.  相似文献   

19.
Herein, we report a theoretical and experimental study of the water-gas shift (WGS) reaction on Ir1/FeOx single-atom catalysts. Water dissociates to OH* on the Ir1 single atom and H* on the first-neighbour O atom bonded with a Fe site. The adsorbed CO on Ir1 reacts with another adjacent O atom to produce CO2, yielding an oxygen vacancy (Ovac). Then, the formation of H2 becomes feasible due to migration of H from adsorbed OH* toward Ir1 and its subsequent reaction with another H*. The interaction of Ir1 and the second-neighbouring Fe species demonstrates a new WGS pathway featured by electron transfer at the active site from Fe3+−O⋅⋅⋅Ir2+−Ovac to Fe2+−Ovac⋅⋅⋅Ir3+−O with the involvement of Ovac. The redox mechanism for WGS reaction through a dual metal active site (DMAS) is different from the conventional associative mechanism with the formation of formate or carboxyl intermediates. The proposed new reaction mechanism is corroborated by the experimental results with Ir1/FeOx for sequential production of CO2 and H2.  相似文献   

20.
Herein, we report a theoretical and experimental study of the water‐gas shift (WGS) reaction on Ir1/FeOx single‐atom catalysts. Water dissociates to OH* on the Ir1 single atom and H* on the first‐neighbour O atom bonded with a Fe site. The adsorbed CO on Ir1 reacts with another adjacent O atom to produce CO2, yielding an oxygen vacancy (Ovac). Then, the formation of H2 becomes feasible due to migration of H from adsorbed OH* toward Ir1 and its subsequent reaction with another H*. The interaction of Ir1 and the second‐neighbouring Fe species demonstrates a new WGS pathway featured by electron transfer at the active site from Fe3+?O???Ir2+?Ovac to Fe2+?Ovac???Ir3+?O with the involvement of Ovac. The redox mechanism for WGS reaction through a dual metal active site (DMAS) is different from the conventional associative mechanism with the formation of formate or carboxyl intermediates. The proposed new reaction mechanism is corroborated by the experimental results with Ir1/FeOx for sequential production of CO2 and H2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号