首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Preparations of the title compounds, 5 – 7 (Scheme 1 and Table 1), of their ammonium salts, 9 – 11 (Scheme 2 and Table 2), and of the corresponding cinnamaldehyde‐derived iminium salts 12 – 14 (Scheme 3 and Table 3) are reported. The X‐ray crystal structures of 15 cinnamyliminium PF6 salts have been determined (Table 4). Selected 1H‐NMR data (Table 5) of the ammonium and iminium salts are discussed, and structures in solution are compared with those in the solid state.  相似文献   

2.
Oligonucleotides containing 7‐deaza‐2′‐deoxyinosine derivatives bearing 7‐halogen substituents or 7‐alkynyl groups were prepared. For this, the phosphoramidites 2b – 2g containing 7‐substituted 7‐deaza‐2′‐deoxyinosine analogues 1b – 1g were synthesized (Scheme 2). Hybridization experiments with modified oligonucleotides demonstrate that all 2′‐deoxyinosine derivatives show ambiguous base pairing, as 2′‐deoxyinosine does. The duplex stability decreases in the order Cd>Ad>Td>Gd when 2b – 2g pair with these canonical nucleosides (Table 6). The self‐complementary duplexes 5′‐d(F7c7I‐C)6, d(Br7c7I‐C)6, and d(I7c7I‐C)6 are more stable than the parent duplex d(c7I‐C)6 (Table 7). An oligonucleotide containing the octa‐1,7‐diyn‐1‐yl derivative 1g , i.e., 27 , was functionalized with the nonfluorescent 3‐azido‐7‐hydroxycoumarin ( 28 ) by the Huisgen–Sharpless–Meldal cycloaddition ‘click’ reaction to afford the highly fluorescent oligonucleotide conjugate 29 (Scheme 3). Consequently, oligonucleotides incorporating the derivative 1g bearing a terminal C?C bond show a number of favorable properties: i) it is possible to activate them by labeling with reporter molecules employing the ‘click’ chemistry. ii) Space demanding residues introduced in the 7‐position of the 7‐deazapurine base does not interfere with duplex structure and stability (Table 8). iii) The ambiguous pairing character of the nucleobase makes them universal probes for numerous applications in oligonucleotide chemistry, molecular biology, and nanobiotechnology.  相似文献   

3.
4.
The microbial transformation of (?)‐Ambrox® ( 1 ), a perfumery sesquiterpene, by a number of fungi, by means of standard two‐stage‐fermentation technique, afforded ambrox‐1α‐ol ( 2 ), ambrox‐1α,11α‐diol ( 3 ), ambrox‐1α,6α‐diol ( 4 ), ambrox‐1α,6α,11α‐triol ( 5 ), ambrox‐3‐one ( 6 ), ambrox‐3β‐ol ( 7 ), ambrox‐3β,6β‐diol ( 8 ), 13,14,15,16‐tetranorlabdane‐3,8,12‐triol ( 9 ), and sclareolide ( 10 ) (Schemes 1 and 2). Further incubation of compound 10 with Cunninghamella elegans afforded 3‐oxosclareolide ( 11 ), 3β‐hydroxysclareolide ( 12 ), 2α‐hydroxysclareolide ( 13 ), 2α,3β‐dihydroxysclareolide ( 14 ), 1α,3β‐dihydroxysclareolide ( 15 ), and 3β‐hydroxy‐8‐episclareolide ( 16 ) (Scheme 3). Metabolites 2 – 5, 12, 13 , and 16 were found to be new compounds. The major transformations include a reaction path involving hydroxylation, ether‐bond cleavage and inversion of configuration. Metabolites 11 – 16 of sclareolide showed significant phytotoxicity (Table 1). The structures of the metabolites were characterized on the basis of spectroscopic techniques.  相似文献   

5.
A brief overview is presented of the field of organocatalysis using chiral H‐bond donors, chiral Brønsted acids, and chiral counter‐anions (Fig. 1). The role of TADDOLs (=α,α,α′,α′‐tetraaryl‐1,3‐dioxolane‐4,5‐dimethanols) as H‐bond donors and the importance of an intramolecular H‐bond for acidity enhancement are discussed. Crystal structures of TADDOLs and of their N‐, S‐, and P‐analogs (Figs. 2 and 3) point the way to proposals of mechanistic models for the action of TADDOLs as organocatalysts (Scheme 1). Simple experimental two‐step procedures for the preparation of the hitherto strongest known TADDOL‐derived acids, the bicyclic phosphoric acids ( 2 in Scheme 2) and of a phosphoric‐trifluorosulfonic imide ( 9 in Scheme 4), are disclosed. The mechanism of sulfinamide formation in reactions of TADDAMIN with trifluoro‐sulfonylating reagents is discussed (Scheme 3). pKa Measurements of TADDOLs and analogs in DMSO (reported in the literature; Fig. 5) and in MeO(CH2)2OH/H2O (described herein; Fig. 6) provide information about further possible applications of this type of compounds as strong chiral Brønsted acids in organocatalysis.  相似文献   

6.
Heptalenecarbaldehydes 1 / 1′ as well as aromatic aldehydes react with 3‐(dicyanomethylidene)‐indan‐1‐one in boiling EtOH and in the presence of secondary amines to yield 3‐(dialkylamino)‐1,2‐dihydro‐9‐oxo‐9H‐indeno[2,1‐c]pyridine‐4‐carbonitriles (Schemes 2 and 4, and Fig. 1). The 1,2‐dihydro forms can be dehydrogenated easily with KMnO4 in acetone at 0° (Scheme 3) or chloranil (=2,3,5,6‐tetrachlorocyclohexa‐2,5‐diene‐1,4‐dione) in a ‘one‐pot’ reaction in dioxane at ambient temperature (Table 1). The structures of the indeno[2,1‐c]pyridine‐4‐carbonitriles 5′ and 6a have been verified by X‐ray crystal‐structure analyses (Fig. 2 and 4). The inherent merocyanine system of the dihydro forms results in a broad absorption band in the range of 515–530 nm in their UV/VIS spectra (Table 2 and Fig. 3). The dehydrogenated compounds 5, 5′ , and 7a – 7f exhibit their longest‐wavelength absorption maximum at ca. 380 nm (Table 2). In contrast to 5 and 5′, 7a – 7f in solution exhibit a blue‐green fluorescence with emission bands at around 460 and 480 nm (Table 4 and Fig. 5).  相似文献   

7.
A series of 7‐fluorinated 7‐deazapurine 2′‐deoxyribonucleosides related to 2′‐deoxyadenosine, 2′‐deoxyxanthosine, and 2′‐deoxyisoguanosine as well as intermediates 4b – 7b, 8, 9b, 10b , and 17b were synthesized. The 7‐fluoro substituent was introduced in 2,6‐dichloro‐7‐deaza‐9H‐purine ( 11a ) with Selectfluor (Scheme 1). Apart from 2,6‐dichloro‐7‐fluoro‐7‐deaza‐9H‐purine ( 11b ), the 7‐chloro compound 11c was formed as by‐product. The mixture 11b / 11c was used for the glycosylation reaction; the separation of the 7‐fluoro from the 7‐chloro compound was performed on the level of the unprotected nucleosides. Other halogen substituents were introduced with N‐halogenosuccinimides ( 11a → 11c – 11e ). Nucleobase‐anion glycosylation afforded the nucleoside intermediates 13a – 13e (Scheme 2). The 7‐fluoro‐ and the 7‐chloro‐7‐deaza‐2′‐deoxyxanthosines, 5b and 5c , respectively, were obtained from the corresponding MeO compounds 17b and 17c , or 18 (Scheme 6). The 2′‐deoxyisoguanosine derivative 4b was prepared from 2‐chloro‐7‐fluoro‐7‐deaza‐2′‐deoxyadenosine 6b via a photochemically induced nucleophilic displacement reaction (Scheme 5). The pKa values of the halogenated nucleosides were determined (Table 3). 13C‐NMR Chemical‐shift dependencies of C(7), C(5), and C(8) were related to the electronegativity of the 7‐halogen substituents (Fig. 3). In aqueous solution, 7‐halogenated 2′‐deoxyribonucleosides show an approximately 70% S population (Fig. 2 and Table 1).  相似文献   

8.
The titanates derived from α,α,α′,α′-tetraaryl-1,3-dioxolane-4,5-dimethanols (TADDOLs, prepared from tartrate) act as catalysts for enantioselective additions of dialkylzinc compounds to aldehydes. For the standard reaction chosen for this investigation of the mechanism, the addition of diethylzinc to benzaldehyde, there is very little change of selectivity with different aryl substituents on the TADDOLate ligands (Tables 2–4, examples). With 0.02 to 0.2 equiv. of the chiral titanates, selectivities above 90% are observed only in the presence of excess tetraisopropyl titanate! According to NMR measurements (Fig. 2), the chiral bicyclic titanate and the achiral titanate do not react to give new species under these conditions. From experiments with different stoichiometries of the components, and with different achiral or chiral OR groups on the Ti-atom of the seven-membered ring titanate, it is concluded (i) that a single chiral titanate is involved in the product-forming step, (ii) that the bulky TADDOLate ligand renders the Ti-center catalytically more active than that of (i-PrO)4Ti, due to fast dynamics of ligand exchange on the sterically hindered Ti-center (Table 5, Fig. 3), and (iii) that the role of excess (i-PrO)4Ti is to remove – by ligand exchange – the product alkoxides (R*O) from the catalytically active Ti-center (Scheme 4, Table 6). Three new crystal structures of TADDOL derivatives (two clathrates with secondary amines, and a dimethyl ether) have been determined by X-ray diffraction (Figs. 5–7), and are compared with those previously reported. The distances between the C(aryl)2O oxygen atoms in the C2- and C1-symmetrical structures vary from 2.58 to 2.94 Å, depending upon the conformation of their dioxolane rings and the presence or absence of an intramolecular H-bond (Fig. 8). A single-crystal X-ray structure of a spiro-titanate, with two TADDOLate ligands on the Ti-atom, is described (Fig. 9); it contains six different seven-membered titanate-ring conformations in the asymmetric unit (Fig. 10), which suggests a highly flexible solution structure. The structures of Ti TADDOLate complexes are compared with those of C2-symmetrical Ru, Rh, and Pd disphosphine chelates (Table 7). A common topological model is presented for all nucleophilic additions to aldehydes involving Ti TADDOLates (Si attack with (R,R)-derivatives, relative topicity unlike; Fig. 11). Possible structures of complexes containing bidentate substrates for Ti TADDOLate-mediated ene reactions and cycloadditions are proposed (Fig. 12). A simple six-membered ring chair-type arrangement of the atoms involved can be used to describe the result of TADDOLate-mediated nucleophilic additions to aldehydes and ketones, with Ti, Zr, Mg, or Al bearing the chiral ligand (Scheme 6). A proposal is also made for the geometry of the intermediate responsible for enantioselective hydrogenation of N-(acetylamino)cinnamate catalyzed by Rh complexes containing C2-symmetrical diphosphines (Fig. 13).  相似文献   

9.
TADDOL (=α,α,α′,α′‐Tetraaryl‐1,3‐dioxolane‐4,5‐dimethanol) and the corresponding dichloride are converted to TADDAMINs (=(4S,5S)‐2,2,N,N′‐tetramethyl‐α,α,α′,α′‐tetraphenyl‐1,3‐dioxolan‐4,5‐dimethanamines) (Scheme 2) and ureas, 12 – 15 , and to TADDOP derivatives with seven‐membered O? P? O ester rings (Schemes 3 and 4). Cl/P‐Replacement via the Michaelis? Arbuzov reaction (Scheme 7) on mono‐ and dichlorides, derived from TADDOL, are described. It was not possible to obtain phosphines with the P‐atom attached to the benzhydrylic C‐atom of the TADDOL skeleton (Schemes 6 and 7). The X‐ray crystal structures (Figs. 1 and 2) of ten of the more than 30 new TADDOL derivatives are discussed. Full experimental details are presented.  相似文献   

10.
A new and simple method for the synthesis of the primary allyl chlorides and bromides 9 – 16 from the secondary or tertiary allyl alcohols 3 – 8 and acyl halide was developed (Scheme 2, Table 1). Non‐commercially available secondary and tertiary allyl alcohols were synthesized from the related ketones and aldehydes via the addition of vinylmagnesium chloride. Mechanistic studies indicate that the alcohols were first acetylated by the acetyl halide and then protonated prior to substitution by the halide, Cl? or Br?, via an SN2′ reaction, to yield the primary halides (Scheme 5).  相似文献   

11.
Conformational analysis of γ‐amino acids with substituents in the 2‐position reveals that an N‐acyl‐γ‐dipeptide amide built of two enantiomeric residues of unlike configuration will form a 14‐membered H‐bonded ring, i.e., a γ‐peptidic turn (Figs. 13). The diastereoselective preparation of the required building blocks was achieved by alkylation of the doubly lithiated N‐Boc‐protected 4‐aminoalkanoates, which, in turn, are readily available from the corresponding (R)‐ or (S)‐α‐amino acids (Scheme 1). Coupling two such γ‐amino acid derivatives gave N‐acetyl and N‐[(tert‐butoxy)carbonyl] (Boc) dipeptide methyl amides ( 1 and 10 , resp.; Fig. 2, Scheme 2); both formed crystals suitable for X‐ray analysis, which confirmed the turn structures in the solid state (Fig. 4 and Table 4). NMR Analysis of the acetyl derivative 1 in CD3OH, with full chemical‐shift and coupling assignments, and, including a 300‐ms ROESY measurement, revealed that the predicted turn structure is also present in solution (Fig. 5 and Tables 13). The results described here are yet another piece of evidence for the fact that more stable secondary structures are formed with a decreasing number of residues, and with increasing degree of predictability, as we go from α‐ to β‐ to γ‐peptides. Implications of the superimposable geometries of the actual turn segments (with amide bonds flanked by two quasi‐equatorial substituents) in α‐, β‐, and γ‐peptidic turns are discussed.  相似文献   

12.
By a one‐pot tandem Ugi multicomponent reaction (MCR)/click reaction sequence not requiring protecting groups, 1H‐1,2,3‐triazole‐modified Ugi‐reaction products 6a – 6n (Scheme 1 and Table 2), 7a – 7b (Table 4), and 8 (Scheme 2) were synthesized successfully. i.e., terminal, side‐chain, or both side‐chain and terminal triazole‐modified Ugi‐reaction products as potential amino acid units for peptide syntheses. Different catalyst systems for the click reaction were examined to find the optimal reaction conditions (Table 1, Scheme 1). Finally, an efficient Ugi MCR+Ugi MCR/click reaction strategy was elaborated in which two Ugi‐reaction products were coupled by a click reaction, thus incorporating the triazole fragment into the center of peptidomimetics (Scheme 3). Thus, the Ugi MCR/click reaction sequence is a convenient and simple approach to different 1H‐1,2,3‐triazole‐modified amino acid derivatives and peptidomimetics.  相似文献   

13.
The preparation of (2S,3S)‐ and (2R,3S)‐2‐fluoro and of (3S)‐2,2‐difluoro‐3‐amino carboxylic acid derivatives, 1 – 3 , from alanine, valine, leucine, threonine, and β3h‐alanine (Schemes 1 and 2, Table) is described. The stereochemical course of (diethylamino)sulfur trifluoride (DAST) reactions with N,N‐dibenzyl‐2‐amino‐3‐hydroxy and 3‐amino‐2‐hydroxy carboxylic acid esters is discussed (Fig. 1). The fluoro‐β‐amino acid residues have been incorporated into pyrimidinones ( 11 – 13 ; Fig. 2) and into cyclic β‐tri‐ and β‐tetrapeptides 17 – 19 and 21 – 23 (Scheme 3) with rigid skeletons, so that reliable structural data (bond lengths, bond angles, and Karplus parameters) can be obtained. β‐Hexapeptides Boc[(2S)‐β3hXaa(αF)]6OBn and Boc[β3hXaa(α,αF2)]6‐OBn, 24 – 26 , with the side chains of Ala, Val, and Leu, have been synthesized (Scheme 4), and their CD spectra (Fig. 3) are discussed. Most compounds and many intermediates are fully characterized by IR‐ and 1H‐, 13C‐ and 19F‐NMR spectroscopy, by MS spectrometry, and by elemental analyses, [α]D and melting‐point values.  相似文献   

14.
Vilsmeier–Haack‐type cyclization of 1H‐indole‐4‐propanoic acid derivatives was examined as model construction for the A–B–C ring system of lysergic acid ( 1 ). Smooth cyclization from the 4 position of 1H‐indole to the 3 position was achieved by Vilsmeier–Haack reaction in the presence of K2CO3 in MeCN, and the best substrate was found to be the N,N‐dimethylcarboxamide 9 (Table 1). The modified method can be successfully applied to an α‐amino acid derivative protected with an N‐acetyl function, i.e., to 27 (Table 2); however, loss of optical purity was observed in the cyclization when a chiral substrate (S)‐ 27 was used (Scheme 5). On the other hand, the intramolecular Pummerer reaction of the corresponding sulfoxide 20 afforded an S‐containing tricyclic system 22 , which was formed by a cyclization to the 5 position (Scheme 3).  相似文献   

15.
A new method for the smooth and highly efficient preparation of polyalkylated aryl propiolates has been developed. It is based on the formation of the corresponding aryl carbonochloridates (cf. Scheme 1 and Table 1) that react with sodium (or lithium) propiolate in THF at 25 – 65°, with intermediate generation of the mixed anhydrides of the arylcarbonic acids and prop‐2‐ynoic acid, which then decompose almost quantitatively into CO2 and the aryl propiolates (cf. Scheme 11). This procedure is superior to the transformation of propynoic acid into its difficult‐to‐handle acid chloride, which is then reacted with sodium (or lithium) arenolates. A number of the polyalkylated aryl propiolates were subjected to flash vacuum pyrolysis (FVP) at 600 – 650° and 10−2 Torr which led to the formation of the corresponding cyclohepta[b]furan‐2(2H)‐ones in average yields of 25 – 45% (cf. Scheme 14). It has further been found in pilot experiments that the polyalkylated cyclohepta[b]furan‐2(2H)‐ones react with 1‐(pyrrolidin‐1‐yl)cyclohexene in toluene at 120 – 130° to yield the corresponding 1,2,3,4‐tetrahydrobenz[a]azulenes, which become, with the growing number of Me groups at the seven‐membered ring, more and more sensitive to oxidative destruction by air (cf. Scheme 15).  相似文献   

16.
The (−)‐ and (+)‐β‐irones ((−)‐ and (+)‐ 2 , resp.), contaminated with ca. 7 – 9% of the (+)‐ and (−)‐transα‐isomer, respectively, were obtained from racemic α‐irone via the 2,6‐trans‐epoxide (±)‐ 4 (Scheme 2). Relevant steps in the sequence were the LiAlH4 reduction of the latter, to provide the diastereoisomeric‐4,5‐dihydro‐5‐hydroxy‐transα‐irols (±)‐ 6 and (±)‐ 7 , resolved into the enantiomers by lipase‐PS‐mediated acetylation with vinyl acetate. The enantiomerically pure allylic acetate esters (+)‐ and (−)‐ 8 and (+)‐ and (−)‐ 9 , upon treatment with POCl3/pyridine, were converted to the β‐irol acetate derivatives (+)‐ and (−)‐ 10 , and (+)‐ and (−)‐ 11 , respectively, eventually providing the desired ketones (+)‐ and (−)‐ 2 by base hydrolysis and MnO2 oxidation. The 2,6‐cis‐epoxide (±)‐ 5 provided the 4,5‐dihydro‐4‐hydroxy‐cisα‐irols (±)‐ 13 and (±)‐ 14 in a 3 : 1 mixture with the isomeric 5‐hydroxy derivatives (±)‐ 15 and (±)‐ 16 on hydride treatment (Scheme 1). The POCl3/pyridine treatment of the enantiomerically pure allylic acetate esters, obtained by enzymic resolution of (±)‐ 13 and (±)‐ 14 , provided enantiomerically pure cisα‐irol acetate esters, from which ketones (+)‐ and (−)‐ 22 were prepared (Scheme 4). The same materials were obtained from the (9S) alcohols (+)‐ 13 and (−)‐ 14 , treated first with MnO2, then with POCl3/pyridine (Scheme 4). Conversely, the dehydration with POCl3/pyridine of the enantiomerically pure 2,6‐cis‐5‐hydroxy derivatives obtained from (±)‐ 15 and (±)‐ 16 gave rise to a mixture in which the γ‐irol acetates 25a and 25b and 26a and 26b prevailed over the α‐ and β‐isomers (Scheme 5). The (+)‐ and (−)‐cisγ‐irones ((+)‐ and (−)‐ 3 , resp.) were obtained from the latter mixture by a sequence involving as the key step the photochemical isomerization of the α‐double bond to the γ‐double bond. External panel olfactory evaluation assigned to (+)‐β‐irone ((+)‐ 2 ) and to (−)‐cisγ‐irone ((−)‐ 3 ) the strongest character and the possibility to be used as dry‐down note.  相似文献   

17.
The reaction of (+)‐car‐2‐ene ( 4 ) with chlorosulfonyl isocyanate (=sulfuryl chloride isocyanate; ClSO2NCO) led to the tricyclic lactams 6 and 8 corresponding to the initial formation both of the tertiary carbenium and α‐cyclopropylcarbenium ions (Scheme 2). A number of optically active derivatives of β‐amino acids which are promising compounds for further use in asymmetric synthesis were synthesized from the lactams (see 16, 17 , and 19 – 21 in Scheme 3).  相似文献   

18.
The reactions of the aromatic thioketone 4,4′‐dimethoxythiobenzophenone ( 1 ) with three monosubstituted oxiranes 3a – c in the presence of BF3⋅Et2O or SnCl4 in dry CH2Cl2 led to the corresponding 1 : 1 adducts, i.e., 1,3‐oxathiolanes 4a – b with R at C(5) and 8c with Ph at C(4). In addition, 1,3‐dioxolanes 7a and 7c , and the unexpected 1 : 2 adducts 6a – b were obtained (Scheme 2 and Table 1). In the case of the aliphatic, nonenolizable thioketone 1,1,3,3‐tetramethylindane‐2‐thione ( 2 ) and 3a – c with BF3⋅Et2O as catalyst, only 1 : 1 adducts, i.e. 1,3‐oxathiolanes 10a – b with R at C(5) and 11a – c with R or Ph at C(4), were formed (Scheme 6 and Table 2). In control experiments, the 1 : 1 adducts 4a and 4b were treated with 2‐methyloxirane ( 3a ) in the presence of BF3⋅Et2O to yield the 1 : 2 adduct 6a and 1 : 1 : 1 adduct 9 , respectively (Scheme 5). The structures of 6a , 8c , 10a , 11a , and 11c were confirmed by X‐ray crystallography (Figs. 15). The results described in the present paper show that alkyl and aryl substituents have significant influence upon the regioselectivity in the process of the ring opening of the complexed oxirane by the nucleophilic attack of the thiocarbonyl S‐atom: the preferred nucleophilic attack occurs at C(3) of alkyl‐substituted oxiranes (O−C(3) cleavage) but at C(2) of phenyloxirane (O−C(2) cleavage).  相似文献   

19.
The photochemical reactions of 2‐substituted N‐(2‐halogenoalkanoyl) derivatives 1 of anilines and 5 of cyclic amines are described. Under irradiation, 2‐bromo‐2‐methylpropananilides 1a – e undergo exclusively dehydrobromination to give N‐aryl‐2‐methylprop‐2‐enamides (=methacrylanilides) 3a – e (Scheme 1 and Table 1). On irradiation of N‐alkyl‐ and N‐phenyl‐substituted 2‐bromo‐2‐methylpropananilides 1f – m , cyclization products, i.e. 1,3‐dihydro‐2H‐indol‐2‐ones (=oxindoles) 2f – m and 3,4‐dihydroquinolin‐2(1H)‐ones (=dihydrocarbostyrils) 4f – m , are obtained, besides 3f – m . On the other hand, irradiation of N‐methyl‐substituted 2‐chloro‐2‐phenylacetanilides 1o – q and 2‐chloroacetanilide 1r gives oxindoles 2o – r as the sole product, but in low yields (Scheme 3 and Table 2). The photocyclization of the corresponding N‐phenyl derivatives 1s – v to oxindoles 2s – v proceeds smoothly. A plausible mechanism for the formation of the photoproducts is proposed (Scheme 4). Irradiation of N‐(2‐halogenoalkanoyl) derivatives of cyclic amines 5a – c yields the cyclization products, i.e. five‐membered lactams 6a , b , and/or dehydrohalogenation products 7a , c and their cyclization products 8a , c , depending on the ring size of the amines (Scheme 5 and Table 3).  相似文献   

20.
A study on the synthesis of the novel N‐(cyclic phosphonate)‐substituted phosphoramidothioates, i.e., O,O‐diethyl N‐[(trans‐4‐aryl‐5,5‐dimethyl‐2‐oxido‐2λ5‐1,3,2‐dioxaphosphorinan‐2‐yl)methyl]phosphoramidothioates 4a – l , from O,O‐diethyl phosphoramidothioate ( 1 ), a benzaldehyde or ketone 2 , and a 1,3,2‐dioxaphosphorinane 2‐oxide 3 was carried out (Scheme 1 and Table 1). Some of their stereoisomers were isolated, and their structure was established. The presence of acetyl chloride was essential for this reaction and accelerated the process of intramolecular dehydration of intermediate 5 forming the corresponding Schiff base 7 (Scheme 2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号