首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ring leader : PtCl2 catalyzes intramolecular cyclization of o‐isopropyl or o‐benzyl aryl alkynes to give substituted indene derivatives with good yields and high selectivity. This reaction appears to proceed through an sp3 C? H activation and 1,4‐hydrogen migration pathway (see scheme).

  相似文献   


2.
3.
Described herein is a manganese‐catalyzed dehydrogenative [4+2] annulation of N H imines and alkynes, a reaction providing highly atom‐economical access to diverse isoquinolines. This transformation represents the first example of manganese‐catalyzed C H activation of imines; the stoichiometric variant of the cyclomanganation was reported in 1971. The redox neutral reaction produces H2 as the major byproduct and eliminates the need for any oxidants, external ligands, or additives, thus standing out from known isoquinoline synthesis by transition‐metal‐catalyzed C H activation. Mechanistic studies revealed the five‐membered manganacycle and manganese hydride species as key reaction intermediates in the catalytic cycle.  相似文献   

4.
Intermolecular hydroarylation reactions of highly strained methylenecyclopropanes 2‐phenylmethylenecyclopropane ( 1 ), 2,2‐diphenylmethylenecyclopropane ( 2 ), methylenespiropentane ( 3 ), bicyclopropylidene ( 4 ), (dicyclopropylmethylene)cyclopropane ( 5 ), and benzhydrylidenecyclopropane ( 6 ) through C? H bond functionalization of 2‐phenylpyridine ( 7 a ) and other arenes with directing groups were studied. The reaction was very sensitive to the substitution on the methylenecyclopropanes. Although these transformations involved (cyclopropylcarbinyl)–metal intermediates, substrates 1 and 4 furnished anti‐Markovnikov hydroarylation products with complete conservation of all cyclopropane rings in 11–93 % yield, whereas starting materials 3 and 5 were inert toward hydroarylation. Methylenecyclopropane 6 formed the products of formal hydroarylation reactions of the longest distal C? C bond in the methylenecyclopropane moiety in high yield, and hydrocarbon 2 afforded mixtures of hydroarylated products in low yields with a predominance of compounds that retained the cyclopropane unit. As byproducts, Diels–Alder cycloadducts and self‐reorganization products were obtained in several cases from substrates 1 – 3 and 5 . The structures of the most important new products have been unambiguously determined by X‐ray diffraction analyses. On the basis of the results of hydroarylation experiments with isotopically labeled 7 a ‐[D5], a plausible mechanistic rationale and a catalytic cycle for these unusual ruthenium‐catalyzed hydroarylation reactions have been proposed. Arene‐tethered ruthenium–phosphane complex 53 , either isolated from the reaction mixture or independently prepared, did not show any catalytic activity.  相似文献   

5.
The first example of a transition‐metal‐catalyzed, meta‐selective C H bromination procedure is reported. In the presence of catalytic [{Ru(p‐cymene)Cl2}2], tetrabutylammonium tribromide can be used to functionalize the meta C H bond of 2‐phenylpyridine derivatives, thus affording difficult to access products which are highly predisposed to further derivatization. We demonstrate this utility with one‐pot bromination/arylation and bromination/alkenylation procedures to deliver meta‐arylated and meta‐alkenylated products, respectively, in a single step.  相似文献   

6.
[Cp*RhIII]‐catalyzed C H activation of arenes assisted by an oxidizing N O or N N directing group has allowed the construction of a number of hetercycles. In contrast, a polar N O bond is well‐known to undergo O‐atom transfer (OAT) to alkynes. Despite the liability of N O bonds in both C H activation and OAT, these two important areas evolved separately. In this report, [Cp*RhIII] catalysts integrate both areas in an efficient redox‐neutral coupling of quinoline N‐oxides with alkynes to afford α‐(8‐quinolyl)acetophenones. In this process the N O bond acts as both a directing group for C H activation and as an O‐atom donor.  相似文献   

7.
Pick your Pd partners : A number of catalytic systems have been developed for palladium‐catalyzed C? H activation/C? C bond formation. Recent studies concerning the palladium(II)‐catalyzed coupling of C? H bonds with organometallic reagents through a PdII/Pd0 catalytic cycle are discussed (see scheme), and the versatility and practicality of this new mode of catalysis are presented. Unaddressed questions and the potential for development in the field are also addressed.

  相似文献   


8.
9.
10.
11.
The efficient RhI‐catalyzed cycloisomerization of benzylallene‐alkynes produced the tricyclo[9.4.0.03,8]pentadecapentaene skeleton through a C H bond activation in good yields. A plausible reaction mechanism proceeds via oxidative addition of the acetylenic C H bond to RhI, an ene‐type cyclization to the vinylidenecarbene–RhI intermediate, and an electrophilic aromatic substitution with the vinylidenecarbene species. It was proposed based on deuteration and competition experiments.  相似文献   

12.
The transformation of C? H bonds into other chemical bonds is of great significance in synthetic chemistry. C? H bond‐activation processes provide a straightforward and atom‐economic strategy for the construction of complex structures; as such, they have attracted widespread interest over the past decade. As a prevalent directing group in the field of C? H activation, the amide group not only offers excellent regiodirecting ability, but is also a potential C? N bond precursor. As a consequence, a variety of nitrogen‐containing heterocycles have been obtained by using these reactions. This Focus Review addresses the recent research into the amide‐directed tandem C? C/C? N bond‐formation process through C? H activation. The large body of research in this field over the past three years has established it as one of the most‐important topics in organic chemistry.  相似文献   

13.
14.
Pd and CO—ureally got me! The title reaction proceeds efficiently at 18 °C under CO (1 atm) with 5 % [Pd(OTs)2(MeCN)2] as precatalyst. Depending on the solvents used, either anthranilates or cyclic imides can be obtained in high yields (see picture, BQ=benzoquinone, Ts=4‐toluenesulfonyl).

  相似文献   


15.
An efficient rhodium(III)‐catalyzed synthesis of 2H‐chromene from N‐phenoxyacetamides and cyclopropenes has been developed. The reaction represents the first example of using cyclopropenes as a three‐carbon unit in rhodium(III)‐catalyzed C(sp2) H activations.  相似文献   

16.
A novel, efficient, and practical method for the synthesis of imidazopyridine derivatives has been developed through the copper‐catalyzed aerobic oxidative C? H functionalization of substituted pyridines with N‐(alkylidene)‐4H‐1,2,4‐triazol‐4‐amines. The procedure occurs by cleavage of the N? N bond in the N‐(alkylidene)‐4H‐1,2,4‐triazol‐4‐amines and activation of an aryl C? H bond in the substituted pyridines. This is the first example of the preparation of imidazopyridine derivatives by using pyridines as the substrates by transition‐metal‐catalyzed C? H functionalization. This method should provide a novel and efficient strategy for the synthesis of other nitrogen heterocycles.  相似文献   

17.
18.
19.
A mild and catalytic method to form difluoromethylated arenes through the activation of benzylic C H bonds has been developed. Utilizing AgNO3 as the catalyst, various arenes with diverse functional groups undergo activation/fluorination of benzylic C H bonds with commercially available Selectfluor reagent as a source of fluorine in aqueous solution. The reaction is operationally simple and amenable to gram‐scale synthesis.  相似文献   

20.
The selective radical/radical cross‐coupling of two different organic radicals is a great challenge due to the inherent activity of radicals. In this paper, a copper‐catalyzed radical/radical C H/P H cross‐coupling has been developed. It provides a radical/radical cross‐coupling in a selective manner. This work offers a simple way toward β‐ketophosphonates by oxidative coupling of aryl ketone o‐acetyloximes with phosphine oxides using CuCl as catalyst and PCy3 as ligand in dioxane under N2 atmosphere at 130 °C for 5 h, and yields ranging from 47 % to 86 %. The preliminary mechanistic studies by electron paramagnetic resonance (EPR) showed that, 1) the reduction of ketone o‐acetyloximes generates iminium radicals, which could isomerize to α‐sp3‐carbon radical species; 2) phosphorus radicals were generated from the oxidation of phosphine oxides. Various aryl ketone o‐acetyloximes and phosphine oxides were suitable for this transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号