首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new rhodamine based probes 1 and 2 for the detection of Fe(3+) were synthesized and their selectivity towards Fe(3+) ions in the presence of other competitive metal ions tested. The probe 1 formed a coloured complex with Fe(3+) as well as Cu(2+) ions and revealed the lack of adequate number of coordination sites for selective complexation with Fe(3+). Incorporation of a triazole unit to the chelating moiety of 1 resulted in the probe 2, that displayed Fe(3+) selective complex formation even in the presence of other competitive metal ions like Li(+), Na(+), K(+), Cu(2+), Mg(2+), Ca(2+), Sr(2+), Cr(3+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Zn(2+), Cd(2+), Hg(2+) and Pb(2+). The observed limit of detection of Fe(3+) ions (5 × 10(-8) M) confirmed the very high sensitivity of 2. The excellent stability of 2 in physiological pH conditions, non-interference of amino acids, blood serum and bovine serum albumin (BSA) in the detection process, and the remarkable selectivity for Fe(3+) ions permitted the use of 2 in the imaging of live fibroblast cells treated with Fe(3+) ions.  相似文献   

2.
Yun J  Choi H 《Talanta》2000,52(5):893-902
1-Nitroso-2-naphthol, an excellent color-forming chelating agent, combines to Fe(III), Co(II), Ni(II), Cu(II) and so on to form slightly soluble complexes in aqueous solution. To determine these metal ions, a tedious and time consuming separation technique, such as liquid-liquid extraction, has often been performed. However, these metal-1-nitroso-2-naphthol complexes could be determined conveniently by ultraviolet-visible (UV-Vis) spectrophotometry in Tween 80 micellar medium that has polyoxyethylene groups. After conditions such as pH, the amount of 1-nitroso-2-naphthol and the stability were adjusted to their optimum values, the sensitivities of the metal ions in Tween 80 medium and in chloroform were compared. It was shown that the sensitivities of Fe(III) and Co(II) in Tween 80 medium were higher than in chloroform, but that of Cu(II) was lower. The interfering effects among analytes ions, Fe(III), Co(II), Ni(II) and Cu(II) were more serious than by other ions, but the interfering effects could be removed by adjusting pH or adding the masking agents such as NH(3) or oxalate. Detection limits of Fe(III), Co(II), Ni(II), and Cu(II) were 0.024, 0.016, 0.039 and 0.023 mug ml(-1), respectively, and the correlation coefficients of these calibration curves were above 0.996. Recovery yields of the metal ions in the mixed standard solution ranged from 96 to 103%, and their coefficients of variation were low ranging between 0.94 and 1.75%. Cu(II) in brass sample and the amount of Fe(III) in steel sample were also determined. This proposed technique is simple, convenient and speedy.  相似文献   

3.
The efficiency of Zn(2+), Cu(2+), Ni(2+), Co(2+), Fe(2+) or Mn(2+) labeling of the conformational and charge states of lysozyme was studied in H(2)O solvent at pH 2.5-6.8. Labeling of lysozyme was conducted with 50 M, 100 M and 500 M excess of the metal ion, resulting in the number of metal ions attached to lysozyme increasing two-fold over this range. At pH 6.2-6.8, Zn(2+), Cu(2+), Ni(2+), Co(2+) and Mn(2+) labeled the highly folded 7+ conformer and the 8+ and 9+ partially unfolded conformers of lysozyme with the same number of metal ion tags, with only Fe(2+) exhibiting no labeling. Lysozyme conserved its charge after metal ion labeling which shows at each charge state the divalent metal ion is replacing two protons. As the pH is lowered to 4.7-5.0 and 2.5-2.9, the labeling of lysozyme by Zn(2+), Cu(2+), Ni(2+), Co(2+) or Mn(2+) decreased in efficiency due to increased competition from protons for the aspartate and glutamate binding sites. The metal ions preferentially labeled the highly folded 7+ and partially unfolded 8+ conformers, but labeling decreased as the charge of lysozyme increased. In contrast to the other metal ions, Fe(2+) exhibited labeling of lysozyme only at the lowest pH of 2.8. At higher pH, the oxidation of Fe(2+) and formation of hydroxy-bridged complexes probably make the Fe(2+) unreactive towards lysozyme.  相似文献   

4.
Highly fluorescent water-soluble CdSe/ZnS (core/shell) quantum dots (QDs) as a fluorescent Cu2+ ion probe were synthesized using thiacalix[4]arene carboxylic acid (TCC) as a surface coating agent. Hydrophobic trioctylphosphine oxide (TOPO) capped CdSe/ZnS QDs were overcoated with TCC in tetrahydrofuran at room temperature, and deprotonation of the carboxyl groups of TCC resulted in the formation of water-soluble QDs. The surface structure of the QDs was characterized by using transmission electron microscopy (TEM) and fluorescence correlation spectroscopy (FCS). TEM images showed that TCC-coated QDs were monodispersed with the particle size (core-shell moiety) of approximately 5 nm. Hydrodynamic diameter of the TCC-coated QDs was determined to be 8.9 nm by FCS, showing that the thickness of the surface organic layer of the QDs was approximately 2 nm. These results indicate that the surface layer of TCC-coated QDs forms a bilayer structure consisting of TOPO and TCC molecules. TCC-coated CdSe/ZnS QDs were highly fluorescent (quantum yield, 0.21) compared to the QDs surface-modified with mercaptoacetic acid and mercaptoundecanoic acid. Fluorescence of the TCC-coated QDs was effectively quenched by Cu2+ ions even in the presence of other transition metal ions such as Cd2+, Zn2+, Co2+, Fe2+, and Fe3+ ions in the same solution. The Stern-Volmer plot for the fluorescence quenching by Cu2+ ions showed a linear relationship up to 30 microM of Cu2+ ions. The ion selectivity of TCC-coated QDs was determined by measurements of fluorescence responses towards biologically important transition metal ions (50 microM) including Fe2+, Fe3+, Co2+>Zn2+, Cd2+. The fluorescence of TCC-coated QDs was almost insensitive to other biologically important ions such as Na+, K+, Mg2+, and Ca2+, suggesting that TCC-coated QDs can be used as a fluorescent Cu2+ ion probe for biological samples. A possible quenching mechanism by Cu2+ ions was also discussed on the basis of a Langmuir-type adsorption isotherm.  相似文献   

5.
对一株双齿相手蟹肠道共生真菌Sporothrixsp.(ZJSEF-7),测定了12种金属离子对该菌生长代谢的影响。结果表明,Fe^3+、K^+、Mn^2+、Mg^2+、Ca^2+和Sb^3+可明显促进菌体的生长;Cu^2+、Sn^2+和Pb^2+对菌体生长没有明显的影响;Fe^2+对菌体生长有强的抑制作用;Al^3+和Zn^2+完全抑制菌体生长。相手蟹共生菌对部分重金属显示了一定的抗性和强的化学防御功能,深入研究其作用机制,将有助于了解相手蟹共生菌的生物学本质及其生态学作用,对于保护红树林生态环境具有重要的意义。  相似文献   

6.
A device has been developed for the measurement of copper(II) ions (Cu++) in aqueous medium. The device reported here is an electrochemical transistor that consists of two platinum electrodes separated by 100-μm spacing and bridged with an anodically grown polycarbazole film. The undoped polycarbazole film is observed to be highly selective for the Cu(II) ions. In a completed device, the conductivity of the polycarbazole film changes on addition of Cu (II)ions. This change in conductivity is attributed to the conformational changes in the polymer phase on occupation of the Cu(II) ions, without affecting electron/proton transfer. The device turns on by adding 2.5×10−6 M Cu(II) ions and reaches a saturation region above a concentration of 10−4 M Cu(II) ions. In this concentration range, the plot of I D vs log[Cu(II)] is linear. The selectivity of the device for other metal ions such as Cu(I), Co(II), Fe(II), Fe(III), Zn(II), and Pb(II) is also studied.  相似文献   

7.
The complexes of transition-metal ions (M2+, where M = Fe, Co, Ni, Cu, Zn, Cd, and Hg) with 2-acetylbenzimidazolethiosemicarbazone (L) are studied under electrospray ionization (ESI) conditions. The ESI mass spectra of Fe and Co complexes showed the complex ions corresponding to [M+2L-2H]+, and those of Ni and Zn complexes showed [M+2L-H]+ ions, wherein the metal/ligand ratio is 1:2 and the oxidation state of the central metal ion is +3 in the case of Fe and Co and +2 in the case of Ni and Zn. The Cd and Cu complexes showed preferentially 1:1 complex ions, i.e., [M+L-H]+ or [M+L+Cl]+, whereas Hg formed both 1:1 and 1:2 complex ions. During formation of the above complex ions one or two ligands are deprotonated after keto-enol tautomerism, depending on the nature and oxidation state of central metal ion. The structures and coordination numbers of the metal ions in the complex ions were studied by their collision-induced dissociation spectra and ion-molecule reactions with acetonitrile or propylamine in the collision cell. Based on these results it is concluded that Fe, Co, Ni and Zn form stable octahedral complexes, whereas tetrahedral or square planar complexes are formed preferentially for other metals. In addition, the Cu complex showed a [2L+2Cu-3H]+ ion with a Cu-Cu bond.  相似文献   

8.
The transition metal (M=Fe, Co, Ni, Cu, Zn, Cd and Hg) complexes of 2- acetylbenzimidazolethiosemicarbazone (L(1)) and 1-methyl 2-acetylbenzimidazole-thiosemicarbazone (L(2)) are analyzed by MALDI using HCCA, THP, MMNPD and DMN as the matrices. All the MALDI spectra are clean without any contribution from the complex ions resulted by multiple proton addition/removal. All the complexes, except Cu, irrespective of the matrix used, show 1:2 complex ions wherein two ligands (neutral or deprotonated) complex with the metal ion depending on the nature and stable oxidation state of the central metal ion viz., [M + 2L - 2H](+) ion for Fe and Co complexes (+3 oxidation state) and [M + 2L - H](+) ion for Ni, Zn, Cd and Hg (+2 oxidation state). The Cu complex show 1:1 complex ion corresponding to [2M + 2L - 2H](+) ions. When HCCA is used as a matrix, the complex ions due to ligand exchange by matrix are also found, and this process is relatively more if a neutral ligand is bound to the metal ion in the original complex ion. The type of complex ions found under MALDI experiments are similar to those found under ESI experiments. However, the complex ions due to reduction of Cu are found only in the MALDI analysis of Cu complexes.  相似文献   

9.
Transition metal-polyalanine complexes were analyzed in a high-capacity quadrupole ion trap after electrospray ionization. Polyalanines have no polar amino acid side chains to coordinate metal ions, thus allowing the effects metal ion interaction with the peptide backbone to be explored. Positive mode mass spectra produced from peptides mixed with salts of the first row transition metals Cr(III), Fe(II), Fe(III), Co(II), Ni(II), Cu(I), and Cu(II) yield singly and doubly charged metallated ions. These precursor ions undergo collision-induced dissociation (CID) to give almost exclusively metallated N-terminal product ions whose types and relative abundances depend on the identity of the transition metal. For example, Cr(III)-cationized peptides yield CID spectra that are complex and have several neutral losses, whereas Fe(III)-cationized peptides dissociate to give intense non-metallated products. The addition of Cu(II) shows the most promise for sequencing. Spectra obtained from the CID of singly and doubly charged Cu-heptaalanine ions, [M + Cu - H](+) and [M + Cu](2+) , are complimentary and together provide cleavage at every residue and no neutral losses. (This contrasts with [M + H](+) of heptaalanine, where CID does not provide backbone ions to sequence the first three residues.) Transition metal cationization produces abundant metallated a-ions by CID, unlike protonated peptides that produce primarily b- and y-ions. The prominence of metallated a-ions is interesting because they do not always form from b-ions. Tandem mass spectrometry on metallated (Met = metal) a- and b-ions indicate that [b(n) + Met - H](2+) lose CO to form [a(n) + Met - H](2+), mimicking protonated structures. In contrast, [a(n) + Met - H](2+) eliminate an amino acid residue to form [a(n-1) + Met - H](2+), which may be useful in sequencing.  相似文献   

10.
The complexes formed by the simplest amino acid, glycine, with different bare and hydrated metal ions (Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+)) were studied in the gas phase and in solvent in order to give better insight into the field of the metal ion-biological ligand interactions. The effects of the size and charge of each cation on the organization of the surrounding water molecules were analyzed. Results in the gas phase showed that the zwitterion of glycine is the form present in the most stable complexes of all ions and that it usually gives rise to an eta(2)O,O coordination type. After the addition of solvation sphere, a resulting octahedral arrangement was found around Ni(2+), Co(2+), and Fe(2+), ions in their high-spin states, whereas the bipyramidal-trigonal (Mn(2+) and Zn(2+)) or square-pyramidal (Cu(2+)) geometries were observed for the other metal species, according to glycine behaves as bi- or monodentate ligand. Despite the fact that the zwitterionic structure is in the ground conformation in solution, its complexes in water are less stable than those obtained from the canonical form. Binding energy values decrease in the order Cu(2+) > Ni(2+) > Zn(2+) approximately Co(2+) > Fe(2+) > Mn(2+) and Cu(2+) > Ni(2+) > Mn(2+) approximately Zn(2+) > Fe(2+) > Co(2+) for M(2+)-Gly and Gly-M(2+) (H(2)O)(n) complexes, respectively. The nature of the metal ion-ligand bonds was examined by using natural bond order and charge decomposition analyses.  相似文献   

11.
A rhodamine B derivative 4 containing a highly electron-rich S atom has been synthesized as a fluorescence turn-on chemodosimeter for Cu(2+). Following Cu(2+)-promoted ring-opening, redox and hydrolysis reactions, comparable amplifications of absorption and fluorescence signals were observed upon addition of Cu(2+); this suggests that chemodosimeter 4 effectively avoided the fluorescence quenching caused by the paramagnetic nature of Cu(2+). Importantly, 4 can selectively recognize Cu(2+) in aqueous media in the presence of other trace metal ions in organisms (such as Fe(3+), Fe(2+), Cu(+), Zn(2+), Cr(3+), Mn(2+), Co(2+), and Ni(2+)), abundant cellular cations (such as Na(+), K(+), Mg(2+), and Ca(2+)), and the prevalent toxic metal ions in the environment (such as Pb(2+) and Cd(2+)) with high sensitivity (detection limit < or =10 ppb) and a rapid response time (< or =1 min). Moreover, by virtue of the chemodosimeter as fluorescent probe for Cu(2+), confocal and two-photon microscopy experiments revealed a significant increase of intracellular Cu(2+) concentration and the subcellular distribution of Cu(2+), which was internalized into the living HeLa cells upon incubation in growth medium supplemented with 50 muM CuCl(2) for 20 h.  相似文献   

12.
二价金属离子对平阳霉素与DNA作用的影响   总被引:2,自引:0,他引:2  
二价金属离子对平阳霉素与DNA作用的影响王自春,黄登宇,袁静明(山西大学分子科学研究所,太原,030006)关键词二价金属离子,平阳霉素,DNA平阳霉素(简称BLM-A5)是抗肿瘤抗生素博莱霉素的成分之一,其化学结构、理化性质和药理作用虽基本相同[1...  相似文献   

13.
A new bis-N,N'-(5-methylimidazol-4-ylmethyl) derivative of a 14-membered tetraazamacrocycle, L1, has been synthesized. The protonation constants of this compound and the stability constants of its complexes with divalent first-row transition metal ions and Fe3+ were determined at 298.2 K in aqueous 0.10 mol dm(-3) KNO3. Compound L1 exhibits high overall basicity, which is mainly conferred by the imidazolyl groups. The complexes of the divalent first row-transition metal ions of L1 follow the Irving-Williams order of stability with the maximum for Cu2+ as expected, but a steep fall of constants is verified for the Mn2+, Fe2+ and Co2+, in one side, and for the Zn2+ complexes, in the other side. Additionally, L1 shows a large affinity for Fe3+, and the relative stability constants for its Cd2+ and Pb2+ complexes indicate that L1 may be useful for the complexometric determination of these two toxic metal ions in solutions containing both metal ions. These studies together with NMR, UV-vis and EPR spectroscopic data indicated the presence of mononuclear complexes, which adopt distorted pyramidal or octahedral geometries depending on the metal centre. The X-ray crystal structure of [Cu(HL1)](PF6)2(NO3).H2O showed that the coordination sphere of the copper centre can be described as a distorted square pyramid with the basal plane defined by three nitrogen donors of the macrocycle backbone and one nitrogen atom from one imidazolyl pendant arm. The apical position is occupied by the nitrogen atom of the macrocycle trans to the pyridine ring. To achieve this coordination environment, the macrocycle is folded along the axis defined by the two N atoms contiguous to the pyridine ring. The free methylimidazolyl arm points away from the metal centre leading to an intramolecular Cu[dot dot dot]N distance of 5.155(1) A.  相似文献   

14.
离子相互作用色谱在无机离子的分离和分析中潜力很大。它通过离子相互作用试剂,能容易控制或改变柱交换容量或分析物的保留值,分离效率高,可快速完成多组分的同时分离。 在ODS固定相上涂敷阳离子型的十六烷基吡啶(CPI),使金属离子成为阴离子型的氨羧络合物,因不同金属氨羧络合物与CPI的作用程度不同从而可使金属离子分离。金属氨羧络合物亲水性很强,在键合相上的吸附作用可忽略,流动相中不需加入有机溶剂,因此络合物  相似文献   

15.
Understanding metal ion interactions with long-chain alkanes not only is of fundamental importance in the areas of organometallic chemistry, surface chemistry, and catalysis, but also has significant implication in mass spectrometry method development for the analysis of polyethylene. Polyethylene represents one of the most challenging classes of polymers to be analyzed by mass spectrometry. In this work, reactions of several transition-metal ions including Cr+, Mn+, Fe+, Co+, Ni+, Cu+, and Ag+ with long-chain alkanes, C28H58 and C36H74, are reported. A metal powder and the nonvolatile alkane are co-deposited onto a sample target of a laser desorption/ionization (LDI) time-of-flight mass spectrometer. The metal ions generated by LDI react with the vaporized alkane during desorption. It is found that all these metal ions can form adduct ions with the long-chain alkanes. Fe+, Co+, and Ni+ produce in-source fragment ions resulting from dehydrogenation and dealkylation of the adduct ions. The post-source decay (PSD) spectra of the metal-alkane adduct ions are recorded. It is shown that PSD of Ag+ alkane adduct ions produces bare metal ions only, suggesting weak binding between this metal ion and alkane. The PSD spectra of the Fe+, Co+, and Ni+ alkane adduct ions display extensive fragmentation. Fragment ions are also observed in the PSD spectra of Cr+, Mn+, and Cu+ alkane adduct ions. The high reactivity of Fe+, Co+, and Ni+ is consistent with that observed in small alkane systems. The unusually high reactivity of Cr+, Mn+, and Cu+ is rationalized by a reaction scheme where a long-chain alkane first forms a complex with a metal ion via ion/induced dipole interactions. If sufficient internal energy is gained during the complex formation, metal ions can be inserted into C-H and C-C bonds of the alkane, followed by fragmentation. The thermal energy of the neutral alkane is believed to be the main source of the internal energy acquired in the complex. Finally, the implication of this work on mass spectrometry method development for polyethylene analysis is discussed.  相似文献   

16.
设计合成了荧光传感分子水杨醛-4-甲氧基苯甲酰腙(SAMB),通过IR、1HNMR和元素分析确证了其结构,利用紫外-可见吸收光谱和荧光光谱考察了其对不同阳离子的识别作用。结果表明,SAMB的荧光发射对锌离子表现出高选择性响应,且形成1∶1型配合物。乙醇中锌离子的加入导致SAMB的荧光增强328倍,而其他过渡金属离子只引起SAMB的荧光的略微增强。初步探讨了受体分子与锌离子的结合模式与荧光增强机理。  相似文献   

17.
Transformations of metal species (particularly Al, Ca, Fe, Mg, Mn, Zn) in ageing humic hydrocolloids were studied, applying a competitive ligand and metal exchange approach. For this purpose, metal-containing hydrocolloids, freshly collected from humic-rich German bog lake waters (Hohlohsee (HO), Black Forest; Venner Moor (VM), Muensterland; Arnsberger Wald (AW), Northrhine-Westfalia) and conventionally pre-filtered through 0.45 m membranes, were subjected on-site to an exchange with EDTA and Cu(II) ions, respectively, as a function of time. EDTA complexes gradually formed, metal fractions exchanged by Cu(II) (as well as free Cu(II) concentrations) were operationally discriminated by means of a small time-controlled tangential-flow ultrafiltration unit (nominal cut-off: 1 kDa). Metal and DOM (dissolved organic matter) fractions obtained this way were determined off-site using instrumental methods (AAS, ICP-OES, carbon analyzer). After weeks of storage, the collected hydrocolloids were studied again by this approach. The EDTA availability of colloid-bound metals (particularly Al and Fe) exhibited different ageing trends, dependent on the sample (VM: decrease of Fe availability (98–76%), HO: increase of Fe availability (76–82%)). In contrast, the Cu(II) exchange equilibria of colloid-bound metals revealed merely low availability of Al (16–38%) and Fe (5–11%) towards Cu(II) ions, also dependent on ageing effects. In particular, the conditional copper exchange constants Kex obtained from the exchange between Cu(II) ions and available metal species (such as Ca, Mg, Mn, Zn) exhibited a strong decrease (by a factor of 2–100) during sample storage, indicating considerable non-equilibria complexation of these metal ions in the original bogwaters studied on-site.  相似文献   

18.
A new rhodamine-derived Schiff base (RS) was synthesized and its sensing property to metal ions was investigated by UV/vis and fluorescence spectroscopies. Addition of Hg2+ ions to the aqueous solution of RS gave a visual color change as well as significantly fluorescent enhancement, while other ions including Pb2+, Cd2+, Cr3+, Zn2+, Cu2+, Fe2+, Co3+, Ni2+, Ca2+, Mg2+, K+ and Na+ ions did not induce any distinct color/spectral changes, which constituted a Hg2+-selective fluorescent OFF-ON chemosensor. The Hg2+-induced ring-opening of spirolactam of rhodamine in RS resulted in the dual chromo- and fluorogenic observation.  相似文献   

19.
A chelating resin based on modified poly (styrene‐alt‐maleic anhydride) with 3‐aminobenzoic acid was synthesized. This modified resin was further reacted by 1,2‐diaminoethane or 1,3‐diaminopropane in the presence of ultrasonic irradiation to prepare tridimensional chelating resin for the removal of heavy metal ions from aqueous solutions. The adsorption behavior of Fe(II), Cu(II), Zn(II) and Pb(II) ions was investigated by synthesized chelating resins in various pH. Among the synthesized resins, CSMA‐AB1 and CSMA‐AB2 demonstrated a high affinity for the selected metal ions compared to SMA‐AB, and the order of removal percentage changes as follow: Fe(II) > Cu(II) > Zn(II) > Pb(II). The adsorption of all metal ions in acidic medium was moderate, and it was favored at the pH value of 6 and 7. Also, the prepared resins were examined for removal of metal ions from industrial wastewater and were shown to have a very efficient adsorption in the case of Cu(II), Fe(II) and Pb(II); however, the adsorption of Zn(II) was lower than others. The resin was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction analysis and thermogravimetric analysis/derivative thermogravimetry. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Pathak R  Rao GN 《Talanta》1997,44(8):1447-1453
A poly[styrene-co-(divinylbenzene)] resin (XAD-4) functionalized with 1-hydrazinophthalazine ligand has been prepared and its analytical properties investigated. The pH dependence of sorption of metal ion on the resin has been determined for Cu(II), Ni(II), Co(II), Zn(II), Cd(II), Pb(II), Fe(III) and Cr(III). Trace amounts of these metal ions were quantitatively retained on the resin and recovered by eluting with 1 mol l(-1) hydrochloric acid. The resin was found to be selective for Fe(III) and its separation from other metal ions was carried out effectively. Metal ions concentrations were determined using AAS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号