首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient two‐step method for the preparation of 3‐(2‐hydroxyethoxy)‐ or 3‐(3‐hydroxypropoxy)isobenzofuran‐1(3H)‐ones 3 has been developed. Thus, the reaction of 1‐(1,3‐dioxol‐2‐yl)‐ or 1‐(1,3‐dioxan‐2‐yl)‐2‐lithiobenzenes, generated in situ by the treatment of 1‐bromo‐2‐(1,3‐dioxol‐2‐yl)‐ or 1‐bromo‐2‐(1,3‐dioxan‐2‐yl)benzenes 1 with BuLi in THF at ?78°, with (Boc)2O afforded tert‐butyl 2‐(1,3‐dioxol‐2‐yl)‐ or 2‐(1,3‐dioxan‐2‐yl)benzoates 2 , which can subsequently undergo facile lactonization on treatment with CF3COOH (TFA) in CH2Cl2 at 0° to give the desired products in reasonable yields.  相似文献   

2.
Nucleophilic trifluoromethylation of α‐imino ketones 2 , derived from arylglyoxal, with RuppertPrakash reagent (CF3SiMe3) offers a convenient access to the corresponding O‐silylated β‐imino‐α‐(trifluoromethyl) alcohols. In a ‘one‐pot’ procedure, by treatment with NaBH4, these products smoothly undergo reduction and desilylation yielding the expected β‐amino‐α‐(trifluoromethyl) alcohols 4 . The latter were used as starting materials for the synthesis of diverse trifluoromethylated heterocycles, including aziridines 5 , 1,3‐oxazolidines 8 , 1,3‐oxazolidin‐2‐ones 9 , 1,3,2‐oxazaphospholidine 2‐oxides 10 , 1,2,3‐oxathiazolidine 2‐oxides 11 , and morpholine‐2,3‐diones 12 . An optically active 5‐(trifluoromethyl)‐substituted 1,3‐oxazolidin‐2‐one 9g was also obtained.  相似文献   

3.
The [4+2] cycloaddition of 3‐(arylsulfanyl)‐1‐(trimethylsilyloxy)buta‐1,3‐dienes with dimethyl penta‐2,3‐dienedioate provides a convenient and regioselective approach to a variety of 4‐(arylsulfanyl)‐2‐hydroxyhomophthalates.  相似文献   

4.
A variety of 6‐(trichloromethyl)salicylates (=2‐hydroxy‐6‐(trichloromethyl)benzoates) were prepared by TiCl4‐mediated cyclization of 1,3‐bis(trimethylsilyloxy)buta‐1,3‐dienes with 1,1,1‐trichloro‐4,4‐dimethoxybut‐3‐en‐2‐one. The employment of trimethylsilyl trifluoromethanesulfonate (Me3SiOTf) as Lewis acid resulted in the formation of trichloromethyl‐substituted cyclohexenones. The cyclizations proceeded with good‐to‐very‐good regioselectivities.  相似文献   

5.
A novel and efficient method for the preparation of 1,3‐dihydro‐3‐oxo‐2‐benzofuran‐1‐carboxylates 4 under mild conditions has been developed. Thus, the reaction of [2‐(dimethoxymethyl)phenyl]lithiums, generated easily from 1‐bromo‐2‐(dimethoxymethyl)benzenes 1 , with α‐keto esters gives the corresponding 2‐[2‐(dimethoxymethyl)phenyl]‐2‐hydroxyalkanoates 2 . The TsOH‐catalyzed cyclization of these hydroxy acetals is followed by the oxidation of the resulting cyclic acetals 3 with PCC to give the desired products in satisfactory yields. The reaction of [2‐(dimethoxymethyl)‐4,5‐dimethoxyphenyl]lithium with (MeOC?O)2, followed by treatment with NaBH4 or organolithiums, affords 2‐[2‐(dimethoxymethyl)‐4,5‐dimethoxyphenyl]‐2‐hydroxyalkanoates 6 , which can similarly be transformed into the corresponding 1,3‐dihydro‐3‐oxo‐2‐benzofuran‐1‐carboxylates 7 in reasonable yields.  相似文献   

6.
The bis(silyl)triazene compound 2,6‐(Me3Si)2‐4‐Me‐1‐(N?N? NC4H8)C6H2 ( 4 ) was synthesized by double lithiation/silylation of 2,6‐Br2‐4‐Me‐1‐(N?N? NC4H8)C6H2 ( 1 ). Furthermore, 2,6‐bis[3,5‐(CF3)2‐C6H3]‐4‐Me‐C6H2‐1‐(N?N? NC4H8)C6H2 derivative 6 can be easily synthesized by a C,C‐bond formation reaction of 1 with the corresponding aryl‐Grignard reagent, i.e., 3,5‐bis[(trifluoromethyl)phenyl]magnesium bromide. Reactions of compound 4 with KI and 6 with I2 afforded in good yields novel phenyl derivatives, 2,6‐(Me3Si)2‐4‐MeC6H2? I and 2,6‐bis[3,5‐(CF3)2? C6H3]‐4‐MeC6H2? I ( 5 and 7 , resp.). On the other hand, the analogous m‐terphenyl 1,3‐diphenylbenzene compound 2,6‐bis[3,5‐(CF3)2? C6H3]C6H3? I ( 8 ) could be obtained in moderate yield from the reaction of (2,6‐dichlorophenyl)lithium and 2 equiv. of aryl‐Grignard reagent, followed by the reaction with I2. Different attempts to introduce the tBu (Me3C) or neophyl (PhC(Me)2CH2) substituents in the central ring were unsuccessful. All the compounds were fully characterized by elemental analysis, melting point, IR and NMR spectroscopy. The structure of compound 6 was corroborated by single‐crystal X‐ray diffraction measurements.  相似文献   

7.
Treatment of symmetrically substituted maleic anhydrides (=furan‐2,5‐diones) 6 with lithium (phenylsulfonyl)methanide, followed by methylation of the adduct with MeI/K2CO3 in acetone, give the corresponding 4,5‐disubstituted 2‐methyl‐2‐(phenylsulfonyl)cyclopent‐4‐ene‐1,3‐diones 8 (Scheme 3). Reaction of the latter with lithium (phenylsulfonyl)methanide in THF (?78°) and then with 4 mol‐equiv. BuLi (?5° to r.t.) leads to 5,6‐disubstituted 4‐methyl‐2‐(phenylsulfonyl)benzene‐1,3‐diols 9 (Scheme 4).  相似文献   

8.
The reaction of N,N′‐diarylselenoureas 16 with phenacyl bromide in EtOH under reflux, followed by treatment with NH3, gave N,3‐diaryl‐4‐phenyl‐1,3‐selenazol‐2(3H)‐imines 13 in high yields (Scheme 2). A reaction mechanism via formation of the corresponding Se‐(benzoylmethyl)isoselenoureas 18 and subsequent cyclocondensation is proposed (Scheme 3). The N,N′‐diarylselenoureas 16 were conveniently prepared by the reaction of aryl isoselenocyanates 15 with 4‐substituted anilines. The structures of 13a and 13c were established by X‐ray crystallography.  相似文献   

9.
The 1,3‐dipolar cycloadditions of ethyl 2‐diazo‐3,3,3‐trifluoropropanoate with electron‐rich and electron‐deficient alkynes, as well as the van Alphen? Hüttel rearrangements of the resulting 3H‐pyrazoles were investigated. These reactions led to a series of CF3‐substituted pyrazoles in good overall yields. Phenyl‐ and diphenylacetylene proved to be unreactive, but, at high temperature, the diazoalkane and phenylacetylene furnished a cyclopropene derivative. As expected, the 1,3‐dipolar cycloaddition to the ynamine occurred much faster than those to electron‐deficient alkynes. With one exception, all cycloadditions proceeded with excellent regioselectivities. The [1,5] sigmatropic rearrangement of the primary 3H‐pyrazoles provided products with shifted acyl groups; products resulting from the migration of a CF3 group were not detected. In agreement with literature reports, this rearrangement occurs faster with 3H‐pyrazoles bearing electron‐withdrawing substituents.  相似文献   

10.
In catena‐poly[[aqua[1,3‐bis(pyridine‐3‐ylmethoxy)benzene‐κN]zinc(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O1:O4], [Zn(C8H4O4)(C18H16N2O2)(H2O)]n, each ZnII centre is tetrahedrally coordinated by two O atoms of bridging carboxylate groups from two benzene‐1,4‐dicarboxylate anions (denoted L2−), one O atom from a water molecule and one N atom from a 1,3‐bis[(pyridin‐3‐yl)methoxy]benzene ligand (denoted bpmb). (Aqua)O—H...N hydrogen‐bonding interactions induce the formation of one‐dimensional helical [Zn(L)(bpmb)(H2O)]n chains which are interlinked through (aqua)O—H...O hydrogen‐bonding interactions, producing two‐dimensional corrugated sheets.  相似文献   

11.
A twofold interpenetrating three‐dimensional CdII coordination framework, [Cd(C8H3NO6)(C14H14N4)]n, has been prepared and characterized by IR spectroscopy, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. The asymmetric unit consists of a divalent CdII atom, one 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene (1,3‐BMIB) ligand and one fully deprotonated 5‐nitrobenzene‐1,3‐dicarboxylate (NO2‐BDC2−) ligand. The coordination sphere of the CdII atom consists of five O‐donor atoms from three different NO2‐BDC2− ligands and two imidazole N‐donor atoms from two different 1,3‐BMIB ligands, forming a distorted {CdN2O5} pentagonal bipyramid. The NO2‐BDC ligand links three CdII atoms via a μ1‐η11 chelating mode and a μ2‐η21 bridging mode. The title compound is a twofold interpenetrating 3,5‐connected network with the {42.65.83}{42.6} topology. In addition, the compound exhibits fluorescence emissions in the solid state at room temperature.  相似文献   

12.
A series of 3‐(3‐hydroxyphenyl)‐4‐alkyl‐3,4‐dihydrobenzo[e][1,3]oxazepine‐1,5‐dione compounds with general formula CnH2n+1CNO(CO)2C6H4(C6H4OH) in which n are even parity numbers from 2 to 18. The structure determinations on these compounds were performed by FT‐IR spectroscopy which indicated that the terminal alkyl chain attached to the oxazepine ring was fully extended. Conformational analysis in DMSO at ambient temperature was carried out for the first time via high resolution 1H NMR and 13C NMR spectroscopy.  相似文献   

13.
A convenient synthesis of the 1,3‐dihydro‐1,3,3‐tris(perfluoroalkyl)isobenzofuran‐1‐ols 3a , b was elaborated starting from commercially available phthaloyl dichloride and trimethyl(perfluoroalkyl)silanes (Me3SiRf) 1a , b (Rf=CF3, C2F5) in the presence of a fluoride source (Schemes 1 and 3). In a reaction analogous to alkyl Grignard reagents, double chloride substitution by two perfluoroalkyl groups and subsequent addition of one perfluoroalkyl group with concomitant ring closure led to this new class of compounds (Scheme 2). The syntheses of the alcohols and some alcoholates, as well as of the corresponding trimethylsilyl ethers are described. A combination of special 1D and 2D NMR experiments allowed the assignment of all atoms of the new compounds. The solid‐state structure of 1,3‐dihydro‐1,3,3‐tris(trifluoromethyl)isobenzofuran‐1‐ol ( 3a ) was elucidated by X‐ray diffraction methods.  相似文献   

14.
A convenient one‐pot method for the preparation of (4Z)‐4‐(arylmethylidene)‐5‐ethoxy‐1,3‐oxazolidine‐2‐thiones 2 and 3 from ethyl (2Z)‐3‐aryl‐2‐isothiocyanatoprop‐2‐enoates 1 , which can be easily prepared from ethyl 2‐azidoacetate and aromatic aldehydes, has been developed. Thus, these α‐isothiocyanato α,β‐unsaturated esters were treated with organolithium compounds, including lithium enolates of acetates, to provide 5‐substituted (4Z)‐4‐(arylmethylidene)‐5‐ethoxy‐1,3‐oxazolidine‐2‐thiones, 2 , and 2‐[(4Z)‐(4‐arylmethylidene)‐5‐ethoxy‐2‐thioxo‐1,3‐oxazolidin‐5‐yl]acetates, 3 .  相似文献   

15.
A novel two‐dimensional (2D) ZnII coordination framework, poly[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene](μ‐5‐nitrobenzene‐1,3‐dicarboxylato)zinc(II)], [Zn(C8H3NO6)(C14H14N4)]n or [Zn(NO2‐BDC)(1,3‐BMIB)]n [1,3‐BMIB is 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene and NO2‐H2BDC is 5‐nitrobenzene‐1,3‐dicarboxylic acid], has been prepared and characterized by IR, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. Single‐crystal X‐ray diffraction analysis revealed that the compound is a new 2D polymer with a 63 topology parallel to the (10) crystal planes based on left‐handed helices, right‐handed helical NO2‐BDC–Zn chains and [Zn2(1,3‐BMIB)2]n clusters. In the crystal, adjacent layers are further connected by C—H…O hydrogen bonds, C—H…π interactions, C—O…π interactions and N—O…π interactions to form a three‐dimensional structure in the solid state. In addition, the compound exhibits strong fluorescence emissions in the solid state at room temperature.  相似文献   

16.
The Cu2+ ions in the title compounds, namely bis[1,3‐bis(pentafluorophenyl)propane‐1,3‐dionato‐κ2O,O′]copper(II) p‐xylene n‐solvate, [Cu(C15HF10O2)2nC8H10, with n = 1, (I), n = 2, (II), and n = 4, (III), are coordinated by two 1,3‐bis(pentafluorophenyl)propane‐1,3‐dionate ligands. The coordination complexes of (I) and (II) have crystallographic inversion symmetry at the Cu atom and the p‐xylene molecule in (I) also lies across an inversion centre. The p‐xylene molecules in (I) and (II) interact with the pentafluorophenyl groups of the complex via arene–perfluoroarene interactions. In the crystal of (III), two of the p‐xylene molecules interact with the pentafluorophenyl groups via arene–perfluoroarene interactions. The other two p‐xylene molecules are located on the CuO4 coordination plane, forming a uniform cavity produced by metal...π interactions.  相似文献   

17.
Abstract. The 3D cobalt(II) coordination polymers [Co1.5(HDDB)(1,4‐bib)1.5(H2O)]n ( 1 ), and {[Co2(DDB)(1,3‐bib)22‐H2O)] · H2O}n ( 2 ) were assembled by mixed‐ligand synthetic strategy [H4DDB = 1,3‐bis(2,4‐dicarboxyphenyl) benzene, 1,3‐bib = 1,3‐bis(1H‐imidazol‐4‐yl)benzene, and 1,4‐bib = 1,4‐bis(1H‐imidazol‐4‐yl)benzene]. Their structures were determined by single‐crystal X‐ray diffraction analyses and further characterized by elemental analyses (EA), IR spectroscopy, powder X‐ray diffraction (PXRD), and thermogravimetric (TG) analyses. Single X‐ray diffraction analysis reveals that complex 1 is an interestingly 3D (3,3.6)‐connected (63)4(65 · 88 · 102) net, and complex 2 is an unprecedented dinuclear [Co2(COO)(μ2‐H2O)] SBUs based 3D (3,6)‐connected (3 · 6 · 7)(32 · 43 · 54 · 63 · 7 · 82) net. Additionally, the magnetic properties of 2 were investigated.  相似文献   

18.
Coordination polymers (CPs) have been widely studied because of their diverse and adjustable topologies and wide‐ranging applications in luminescence, chemical sensors, magnetism, photocatalysis, gas adsorption and separation. In the present work, two coordination polymers, namely poly[(μ5‐benzene‐1,3,5‐tricarboxylato‐κ6O1:O1′:O3:O3:O5,O5′){μ3‐1,3‐bis[(1,2,4‐triazol‐4‐yl)methyl]benzene‐κ3N:N′:N′′}di‐μ3‐hydroxido‐dicobalt(II)], [Co2(C9H3O6)(OH)(C12H12N6)]n or [Co2(btc)(OH)(mtrb)]n, (1), and poly[[diaquabis(μ3‐benzene‐1,3,5‐tricarboxylato‐κ3O1:O3:O5)bis{μ3‐1,3‐bis[(1,2,4‐triazol‐4‐yl)methyl]benzene‐κ3N:N′:N′′}tetra‐μ3‐hydroxido‐tetracopper(II)] monohydrate], {[Cu4(C9H3O6)2(OH)2(C12H12N6)2(H2O)2]·H2O}n or {[Cu4(btc)2(OH)2(mtrb)2(H2O)2]·H2O}n, (2), were synthesized by the hydrothermal method using 1,3‐bis[(1,2,4‐triazol‐4‐yl)methyl]benzene (mtrb) and benzene‐1,3,5‐tricarboxylate (btc3?). CP (1) exhibits a (3,8)‐coordinated three‐dimensional (3D) network of the 3,8T38 topological type, with a point symbol of {4,5,6}2{42·56·616·72·82}, based on the tetranuclear hydroxide cobalt(II) cluster [Co43‐OH)2]. CP (2) shows a (3,8)‐coordinated tfz‐d topology, with a point symbol of {43}2{46·618·84}, based on the tetranuclear hydroxide copper(II) cluster [Cu43‐OH)2]. The different (3,8)‐coordinated 3D networks based on tetranuclear hydroxide–metal clusters of (1) and (2) are controlled by the different central metal ions [CoII for (1) and CuII for (2)]. The thermal stabilities and solid‐state optical diffuse‐reflection spectra were measured. The energy band gaps (Eg) obtained for (1) and (2) were 2.72 and 2.29 eV, respectively. CPs (1) and (2) exhibit good photocatalytic degradation of the organic dyes methylene blue (MB) and rhodamine B (RhB) under visible‐light irradiation.  相似文献   

19.
A Cyclic Methylenediphosphinic Acid: 1,3‐Dihydroxy‐1,3‐dioxo‐1,2,3,4‐tetrahydro‐1λ5,3λ5‐[1,3]diphosphinine Strong acids protonate 1,3‐bis(dimethylamino)‐1λ5,3λ5‐[1,3]diphosphinine ( 5 ) to give the corresponding cation. The protonation is followed by hydrolytic cleavage of the dimethylamino groups resulting in the formation of the cyclic methylenediphosphinic acid ( 6 ).  相似文献   

20.
A convenient procedure for the preparation of a new type of thiophthalides, 3‐alkoxybenzo[c]thiophen‐1(3H)‐ones 4 and 9 has been developed. Thus, 1‐(dialkoxymethyl)‐2‐lithiobenzenes, generated by Br/Li exchange between 2‐bromo‐1‐(dialkoxymethyl)benzenes 1 and 6 , and BuLi, react with isothiocyanates to afford N‐substituted 2‐(dialkoxymethyl)benzothioamides 2 and 7 , which, on treatment with a catalytic amount of TsOH?H2O, give N‐substituted 3‐alkoxybenzo[c]thiophen‐1(3H)‐imines 3 and 8 . The latter are hydrolyzed under acidic conditions to the desired products 4 and 9 , respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号