首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Programmed nucleic acid sequences undergo K+ ion‐induced self‐assembly into G‐quadruplexes and separation of the supramolecular structures by the elimination of K+ ions by crown ether or cryptand ion‐receptors. This process allows the switchable formation and dissociation of the respective G‐quadruplexes. The different G‐quadruplex structures bind hemin, and the resulting hemin–G‐quadruplex structures reveal horseradish peroxidase DNAzyme catalytic activities. The following K+ ion/receptor switchable systems are described: 1) The K+‐induced self‐assembly of the Mg2+‐dependent DNAzyme subunits into a catalytic nanostructure using the assembly of G‐quadruplexes as bridging unit. 2) The K+‐induced stabilization of the anti‐thrombin G‐quadruplex nanostructure that inhibits the hydrolytic functions of thrombin. 3) The K+‐induced opening of DNA tweezers through the stabilization of G‐quadruplexes on the “tweezers’ arms" and the release of a strand bridging the tweezers into a closed structure. In all of the systems reversible, switchable, functions are demonstrated. For all systems two different signals are used to follow the switchable functions (fluorescence and the catalytic functions of the derived hemin–G‐quadruplex DNAzyme).  相似文献   

2.
Herein, a novel sensitive pseudobienzyme electrocatalytic DNA biosensor was proposed for mercury ion (Hg2+) detection by using autonomously assembled hemin/G-quadruplex DNAzyme nanowires for signal amplification. Thiol functionalized capture DNA was firstly immobilized on a nano-Au modified glass carbon electrode (GCE). In presence of Hg2+, the specific coordination between Hg2+ and T could result in the assembly of primer DNA on the electrode, which successfully triggered the HCR to form the hemin/G-quadruplex DNAzyme nanowires with substantial redox probe thionine (Thi). In the electrolyte of PBS containing NADH, the hemin/G-quadruplex nanowires firstly acted as an NADH oxidase to assist the concomitant formation of H2O2 in the presence of dissolved O2. Then, with the redox probe Thi as electron mediator, the hemin/G-quadruplex nanowires acted as an HRP-mimicking DNAzyme that quickly bioelectrocatalyzed the reduction of produced H2O2, which finally led to a dramatically amplified electrochemical signal. This method has demonstrated a high sensitivity of Hg2+ detection with the dynamic concentration range spanning from 1.0 ng L−1 to 10 mg L−1 Hg2+ and a detection limit of 0.5 ng L−1 (2.5 pM) at the 3Sblank level, and it also demonstrated excellent selectivity against other interferential metal ions.  相似文献   

3.
The fast chemiluminescence (CL) arising from the reaction of bis(2,4,6-trichlorophenyl)oxalate (TCPO) with hydrogen peroxide in the presence of 1-(dansylamidopropyl)-1-aza-4,7,10-trithiacyclododecane (L) as a novel fluorophore, and imidazole as catalyst, has been studied in ethyl acetate solution. The relationships between the chemiluminescence intensity and concentrations of TCPO, imidazole, hydrogen peroxide and L are reported. In the presence of imidazole as catalyst, the entire CL signal was completed in less than 3 s. The quenching effect of Cu2+, Pb2+, Cd2+, Hg2+ and Ag+ ions on the chemiluminescent system was investigated, the resulting Stern–Volmer plots were obtained and the KQ values were calculated. It was found that the quenching effect of metal ions on the chemiluminescence of L decreases in the order Cu2+ > Pb2+ > Cd2+ > Hg2+ > Ag+.  相似文献   

4.
This paper studied the electrochemical sensors based on C? C bonding of graphene oxide (GO) on π‐conjugated aromatic group modified gold electrodes for simultaneous detection of heavy metal ions. For comparison, another sensing interface Au‐Ph‐NH‐CO‐GO, in which GO was modified to Au‐Ph‐NH2 interfaces by amide bonding. On the basis of the principle of heavy metal ions complexation with oxygenated species on GO, the fabricated sensing interfaces were used for the simultaneous determination of Pb2+, Cu2+ and Hg2+. The performance of two sensing interfaces for simultaneous detection of three metal ions was compared. Au‐Ph‐GO sensing interface demonstrated higher sensitivity and better repeatability than Au‐Ph‐NH‐CO‐GO sensing interface.  相似文献   

5.
In the present study, a novel p-phenylcarboxylic acid BODIPY ( L ) immobilized MCM-41 based solid chemosensor material L-propylsilyl@MCM-41 ( MS4 ) was developed to detect multiple metal ions in a pure aqueous medium. The synthesized solid chemosensor material MS4 shows high sensitivity and removal ability towards trivalent (Al3+, Cr3+) and divalent (Cu2+, Hg2+) metal ions. The emission intensity of MS4 enhanced multifold selectively in the presence of trivalent (Al3+, Cr3+) metal ions and shows quenching in the presence of divalent (Cu2+, Hg2+) metal ions. The limit of detection was calculated to be in the nanomolar range with Al3+, Cr3+, Cu2+, and Hg2+ metal ions in the aqueous medium. The spectroscopic and analytical results suggest that MS4 selectively binds with Al3+ and Cr3+ through −NH functionality and with Hg2+ and Cu2+ through −COOH functionality of p-phenylcarboxylic acid BODIPY ( L ). Further, MS4 selectively removes Al3+, Cr3+, Cu2+, and Hg2+ metal ions from the aqueous media with removal efficiency of 97.28 %, 96.34 %, 87.19 %, and 95.63 %, respectively. No noticeable change in the concentration was observed for other metal ions. The recycling potential of MS4 was evaluated using EDTA for up to seven cycles with no significant reduction in sensing capability.  相似文献   

6.
New water‐soluble hyperbranched polyfluorenes bearing carboxylate side chains have been synthesized by the simple “A2 + B2 + C3” protocol based on Suzuki coupling polymerization. The linear polyfluorene analogue LPFA was also synthesized for comparative investigation. The optical properties of the neutral precursory polymers in CHCl3 and final carboxylic‐anionic conjugated polyelectrolytes in buffer solution were investigated. The obtained hyperbranched polyelectrolyte HPFA2 with lower content of branch unit (2%) showed excellent solubility and high fluorescence quantum yield (?F = 89%) in aqueous solution. Fluorescence quenching of HPFA2 by different metal ions was also investigated, the polyelectrolyte showed high selectivity for Hg2+ and Cu2+ ions relative to other various metal ions in buffer solution. The Stern‐Volmer constant Ksv was determined to be 0.80 × 106 M?1 for Hg2+ and 3.11 × 106 M?1 for Cu2+, respectively, indicating the potential application of HPFA2 as a highly selective and sensitive chemosensor for Hg2+ and Cu2+ ions in aqueous solution. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3431–3439, 2010  相似文献   

7.
Two significant G‐quadruplex aptamers named AGRO100 and T30695 are identified as multifunctional aptamers that can bind the protein ligands nucleolin or HIV‐1 integrase and hemin. Besides their strong binding to target proteins, both AGRO100 and T30695 exhibit high hemin‐binding affinities comparable to that of the known aptamer (termed PS2M) selected by the in vitro evolution process. Most importantly, their corresponding hemin–DNA complexes reveal excellent peroxidase‐like activities, higher than that of the reported hemin–PS2M DNAzyme. This enables these multifunctional aptamers to be applied to the sensitive detection of proteins, which is demonstrated by applying AGRO100 to the chemiluminescence detection of nucleolin expressed at the surface of HeLa cells. Based on the specific AGRO100–nucleolin interaction, the surface‐expressed nucleolin of HeLa cells is labeled in situ with the hemin–AGRO100 DNAzyme, and then determined in the luminol–H2O2 system. Through this approach, the sensitive detection of total nucleolin expressed at the surface of about 6000 HeLa cells is accomplished. Our results suggest that exploiting new functions of existing aptamers will help to extend their potential applications in the biochemical field.  相似文献   

8.
In this study, we developed an electrochemical sensor for sensitive detection of Cu2+ based on gold nanoflowers (AuNFs)‐modified electrode and DNAzyme functionalized Au@MIL‐101(Fe) (MIL: Materials of Institute Lavoisier). The AuNFs‐modified indium tin oxide modified conductive glass electrode(AuNFs/ITO) prepared via electrodeposition showed improved electronic transport properties and provided more active sites to adsorb large amounts of oligonucleotide substrate (DNA1) via thiol‐gold bonds. The stable Au@MIL‐101(Fe) could guarantee the sensitivity because of its intrinsic peroxidase mimic property, while the Cu2+‐dependent DNA‐cleaving DNAzyme linked to Au@MIL‐101(Fe) achieved the selectivity toward Cu2+. After the DNAzyme substrate strand (DNA2) was cleaved into two parts due to the presence of Cu2+, the oligonucleotide fragment linked to MIL‐101(Fe) was able to hybridize with DNA1 adsorbed onto the surface of AuNFs/ITO. Due to the peroxidase‐like catalytic activity of MIL‐101(Fe) and the affinity recognition property of DNAzyme toward Cu2+, the electrochemical biosensor showed a sensitive detection range from 0.001 to 100 μM, a detection limit of 0.457 nM and a high selectivity, demonstrating its potential for Cu2+ detection in real environmental samples.  相似文献   

9.
Stable ultra‐thin Langmuir monolayers of calix[4]resorcinarene derivatives, namely: C‐dec‐9‐enylcalix[4]resorcinarene‐O‐(R+)‐α‐methylbenzylamine (Ionophore I ), and C‐dec‐9‐enylcalix[4]resorcinarene‐O‐(S‐)‐α‐methylbenzylamine (Ionophore II ), were prepared at the air‐water interface. Their interactions with a series of heavy metals (HM) ions (Cu2+, Pb2+, Hg2+ and Cd2+) present in the aqueous subphase were investigated by measuring surface pressure‐area isotherms, at different concentrations. The surface pressure‐area (Π‐A) isotherms were stable and demonstrated the HM amounts influence on the limiting area (Alim) values, therefore confirming the examined macrocycles capability to host the metallic toxicants. Additionally, a HM concentration dependence was realized and interpreted by a selective tendency of both ionophores towards Cu2+ and Cd2+ ions over Pb2+ and Hg2+, especially at high concentrations. The HM ions interactions with the applied calix[4]resorcinarene Langmuir ultra‐thin monolayers were interpreted based on the Gibbs‐Shishkovsky adsorption equation. Moreover, quartz crystal microbalance with impedance measurement (QCM‐I), was applied for the detection of HM ions in solutions. The QCM‐I results showed the effectiveness of the coated QCM‐I crystals in detecting the ions at different concentrations. The detection limit values were in the order of 0.16, 0.3, 0.65, 1.1 ppm (Ionophore I), as well 0.11, 0.45, 0.2, 0.89 (Ionophore II) for the Cu2+, Pb2+, Hg2+ and Cd2+ cations, respectively. Additionally, a selective tendency of both ionophores towards copper ions was shown.  相似文献   

10.
A new distyryl boron dipyrromethene (BODIPY) with two bis(1,2,3‐triazole)amino substituents has been prepared by typical Knoevenagel condensation followed by click reaction. The compound selectively binds to Cu2+ and Hg2+ ions in CH3CN/H2O (1:1 v/v) to give remarkably blueshifted electronic absorption and fluorescence bands as a result of inhibition of the intramolecular charge‐transfer process upon binding to these metal ions. The color changes can be easily seen by the naked eye. The binding stoichiometry between this probe and Cu2+ ions has been determined to be 1:2 by a Job plot of the fluorescence data with a binding constant of ((6.2±0.6)×109) M ?2. The corresponding value for Hg2+ ions is about sixfold smaller.  相似文献   

11.
In this work, an “on–off–on” switch system has been successfully applied through the construction of an electrochemiluminscent biosensor for copper ion (Cu2+) detection based on a new electrochemiluminescence (ECL) emitter of supramolecular nanorods, which was achieved through supramolecular interactions between 3,4,9,10‐perylenetetracarboxylic acid (PTCA) and aniline. The initial “signal‐on” state with strong and stable ECL emission was obtained by use of the supramolecular nanorods with a new signal amplification strategy involving a co‐reaction accelerator. In addition, ECL quencher probes (Fc‐NH2/Cu‐Sub/nano‐Au) were fabricated by immobilizing aminoferrocene (Fc‐NH2) on Cu‐substrate strand modified Au nanoparticles. The quencher probes were hybridized with the immobilized Cu‐enzyme strand to form Cu2+‐specific DNAzyme. Similarly, the “signal‐off” state was obtained by the high quenching effect of Fc‐NH2 on the ECL of the excited‐state PTCA (1PTCA*). As expected, the second “switch‐on” state could achieved by incubating with the target Cu2+, owing to the Cu2+‐specific DNAzyme, which was irreversibly cleaved, resulting in the release of the quencher probes from the sensor interface. Herein, on the basis of the ECL intensity changes (ΔIECL) before and after incubating with the target Cu2+, the prepared Cu2+‐specific DNAzyme‐based biosensor was used for the determination of Cu2+ concentrations with high sensitivity, excellent selectivity, and good regeneration.  相似文献   

12.
The introduction of Lawesson′s reagent into a bis‐rhodamine spirolactam system afforded a new fluorescent sensor for Cu2+ ions, SRR , which contained a new tridentate sulfur ligand. SRR showed excellent specificity for Cu2+ ions over other cations (including Cu+, Hg2+, and Fe3+), very high sensitivity (10 nM ), and a rapid response time (3 min). The detection mechanism was investigated by 1H NMR, 13C NMR, 31P NMR, and ESR spectroscopy, MS, and Gaussian calculations. Coordination of a Cu2+ ion to the tridentate sulfur ligand, which promotes ring‐opening of the rhodamine groups, followed by a spontaneous reduction reaction (Cu2+ into Cu+), has been proposed as the sensing mechanism.  相似文献   

13.
Three tricarbocyanine dyes (IR‐897, IR‐877, and IR‐925) with different thiourea substituents that function as dosimeter units through specific Hg2+‐induced desulfurization have been demonstrated in a fast indicator paper for Hg2+ and MeHg+ ions. In comparison with available Hg2+‐selective chemodosimeters, IR‐897 and IR‐877 show several advantages, such as convenient synthesis, very long wavelengths falling in the near‐infrared (NIR) region (650–900 nm) with high molar extinction coefficients, a ratiometric response, and quite low disturbance with Ag+ and Cu2+ ions. They exhibit large redshifts, which result in a clear color change from deep blue to pea green that can be easily monitored by the naked eye for a convenient indicator paper. In emission spectra, they display a characteristic turn‐off mode at 780 nm and turn‐on mode at 830 nm with titration of Hg2+ ions. Remarkably, the signal/noise (S/N) ratio with other thiophilic metal ions (Ag+ and Cu2+) is greatly enhanced with ratiometric measurement of two channels: excitation spectra mode (I810 nm/I670 nm, monitored at 830 nm) and emission spectra mode (I830 nm/I780 nm, isosbestic absorption point at 730 nm as excitation). The distinct response is dependent upon the electron‐donating effect of the thiourea substituents; that is, the stronger the electron‐donating capability of the thiourea substituents, the faster the Hg2+‐promoted cyclization. Additionally, experiments with living SW1116 cells show that these three tricarbocyanine dyes with low toxicity can exhibit special characteristics that are favorable for visualizing intracellular Hg2+ and MeHg+ ions in biological systems, including excellent membrane permeability, minimal interfering absorption and fluorescence from biological samples, low scattering, and deep penetration into tissues.  相似文献   

14.
Tyrosinases are ubiquitous binuclear copper enzymes that oxygenate to CuII2O2 cores bonded by three histidine Nτ‐imidazoles per Cu center. Synthetic monodentate imidazole‐bonded CuII2O2 species self‐assemble in a near quantitative manner at ?125 °C, but Nπ‐ligation has been required. Herein, we disclose the syntheses and reactivity of three Nτ‐imidazole bonded CuII2O2 species at solution temperatures of ?145 °C, which was achieved using a eutectic mixture of THF and 2‐MeTHF. The addition of anionic phenolates affords a CuIII2O2 species, where the bonded phenolates hydroxylate to catecholates in high yields. Similar CuIII2O2 intermediates are not observed using Nπ‐bonded CuII2O2 species, hinting that Nτ‐imidazole ligation, conserved in all characterized Ty, has functional advantage beyond active‐site flexibility. Substrate accessibility to the oxygenated Cu2O2 core and stabilization of a high oxidation state of the copper centers are suggested from these minimalistic models.  相似文献   

15.
《Electroanalysis》2018,30(3):402-414
A sensitive electrochemical immunosensor for Hepatitis B virus surface antigen (HBsAg) detection was fabricated based on hemin/G‐quadruplex interlaced onto Fe3O4‐AuNPs or hemin ‐amino‐reduced graphene oxide nanocomposite (H‐amino‐rGO‐Au). G‐quadruplex DNAzyme, which is composed of hemin and guanine‐rich nucleic acid, is an effective signal amplified tool for its outstanding peroxidase activity and Fe3O4‐AuNPs or (H‐amino‐rGO‐Au) nanocomposites with quasi‐enzyme activity provide appropriate support for the immobilization of hemin/G‐quadruplex. The target protein was sandwiched between the primary antibody immobilized on the GO and secondary antibody immobilized on the Fe3O4‐AuNPs or (H‐amino‐rGO‐Au) nanocomposites and glutaraldehyde was used as linking agent for the immobilization of primary antibody on the surface of GO. Both Fe3O4‐AuNPs and H‐amino‐rGO‐Au nanocomposite and also hemin/G‐quadruplex can cooperate the electrocatalytic reduction of H2O2 in the presence of methylene blue as mediator. The proposed immunosensor has a wide linear dynamic range of 0.1 pg/ml to 300 pg/ml with a detection limit of 60 fg/ml when Fe3O4‐AuNPs was used for immobilization of hemin/G‐quadruplex, while the dynamic range and DL were 0. 1–1000 pg/mL and 10 fg/mL, respectively in the presence of H‐amino‐rGO‐ Au nanocomposite as platform for immobilizing of hemin/G‐quadruplex. The proposed immunosensor was also used for analysis of HBsAg in spiked human serum samples with satisfactory results.  相似文献   

16.
G‐quadruplex (G4)/hemin DNAzymes have been extensively applied in bioanalysis and molecular devices. However, their catalytic activity is still much lower than that of proteinous enzymes. The G4/hemin DNAzyme activity is correlated with the G4 conformations and the solution conditions. However, little is known about the effect of the flanking sequences on the activity, though they are important parts of G4s. Here, we report sequences containing d(CCC), flanked on both ends of the G4‐core sequences remarkably enhance their DNAzyme activity. By using circular dichroism and UV‐visible spectroscopy, the d(CCC) flanking sequences were demonstrated to improve the hemin binding affinity to G4s instead of increasing the parallel G4 formation, which might explain the enhanced DNAzyme activity. Meanwhile, the increased hemin binding ability promoted the degradation of hemin within the DNAzyme by H2O2. Furthermore, the DNAzyme with d(CCC) flanking sequences showed strong tolerance to pH value changes, which makes it more suitable for applications requiring wide pH conditions. The results highlight the influence of the flanking sequences on the DNAzyme activity and provide insightful information for the design of highly active DNAzymes.  相似文献   

17.
A new chemosensor for Cu2+ was synthesized based on 1,2,3,4,5,6,7,8,9,10‐decahydroacridine‐1,8‐dione dyes, which exhibited an obvious fluorescent selectivity to the sensing of Cu2+ ions over other cations, such as Na+, K+, Ca2+, Cd2+, Co2+, Hg2+, Mg2+, Mn2+, Ni2+, Zn2+, Ag+ and Pb2+. Moreover, it presented a fluorescent switch function when EDTA was added to the compound‐Cu2+ complex in examined systems.  相似文献   

18.
Despite several types of fluorescent sensing molecules have been proposed and examined to signal Hg2+ ion binding, the development of fluorescence‐based devices for in‐field Hg2+ detection and screening in environmental and industrial samples is still a challenging task. Herein, we report the synthesis and characterization of three new coumarin‐based fluorescent chemosensors featuring mixed thia/aza macrocyclic framework as receptors units, that is, ligands L1 – L3 . These probes revealed an OFF–ON selective response to the presence of Hg2+ ions in MeCN/H2O 4:1 (v/v), which allowed imaging of this metal ion in Cos‐7 cells in vitro. Once included in silica core–polyethylene glycol (PEG) shell nanoparticles or supported on polyvinyl chloride (PVC)‐based polymeric membranes, ligands L1 – L3 can also selectively sense Hg2+ ions in pure water. In particular we have developed an optical sensing array tacking advantage of the fluorescent properties of ligand L3 and based on the computer screen photo assisted technique (CSPT). In the device ligand L3 is dispersed into PVC membranes and it quantitatively responds to Hg2+ ions in natural water samples.  相似文献   

19.
The logic system is obtained by using a series of double‐stranded (ds) DNA templates with mismatched base pairs (T–T or C–C) and ion‐modulated exonuclease III (Exo III) activity, in which the Exo III cofactors, Hg2+ and Ag+ ions, are used as inputs for the activation of the respective scission of Exo III based on the formation of T–Hg2+–T or C–Ag+–C base pairs. Additionally, two kinds of signal probes are utilized to transduce the logic operations. One is the two split G‐rich DNA strands that are used to design the OR, AND, INHIBIT, and XOR gates, whereas the other is the self‐assembled split G‐quadruplex structure to construct NOR, NAND, IMPLICATION, and XNOR operations based on DNA hybridization and strand displacement. In the presence of hemin, the split G‐quadruplex biocatalyzes the formation of a colored product, which is an output signal for the different logic gates. Thus, we have constructed a complete set of colorimetric DNA logic gates based on the Exo III and split G‐quadruplex for the first time. In addition, we are able to effortlessly recognize the logic output signals by the naked eye and their simplicity and cost‐effective design is the most apparent feature for the logic gates developed in this work.  相似文献   

20.
A new dinuclear RuII polypyridyl complex, [(bpy)2Ru(H2bpip)Ru(bpy)2]4+ ( RuH2bpip , bpy=2,2‐bipyridine, H2bpip=2,6‐pyridyl(imidazo[4,5‐f][1,10]phenanthroline), was developed to act as a one‐ and two‐photon luminescent probe for biological Cu2+ detection. This RuII complex shows a significant two‐photon absorption cross section (400 GM) and displays a remarkable one‐ and two‐photon luminescence switch in the presence of Cu2+ ions. Importantly, RuH2bpip can selectively recognise Cu2+ in aqueous media in the presence of other abundant cellular cations (such as Na+, K+, Mg2+, and Ca2+), trace metal ions in organisms (such as Zn2+, Ag+, Fe3+, Fe2+, Ni2+, Mn2+, and Co2+), prevalent toxic metal ions in the environment (such as Cd2+, Hg2+, and Cr3+), and amino acids, with high sensitivity (detection limit≤3.33×10?8 M ) and a rapid response time (≤15 s). The biological applications of RuH2bpip were also evaluated and it was found to exhibit low cytotoxicity, good water solubility, and membrane permeability; RuH2bpip was, therefore, employed as a sensing probe for the detection of Cu2+ in living cells and zebrafish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号