首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many nonsynonymous SNPs in the human DNase II gene (DNASE2), potentially relevant to autoimmunity in conditions such as rheumatoid arthritis, have been identified, but only limited population data are available and no studies have evaluated whether such SNPs are functional. Genotyping of all the 15 nonsynonymous human DNase II SNPs was performed in three ethnic groups including 16 different populations using the PCR‐restriction fragment length polymorphism technique. A series of constructs corresponding to each SNP was examined. Fifteen nonsynonymous SNPs in the gene, except for p.Val206Ile in a Korean population, exhibited a mono‐allelic distribution in all of the populations. On the basis of alterations in the activity levels resulting from the corresponding amino acid substitutions, four activity‐abolishing and five activity‐reducing SNPs were confirmed to be functional. The amino acid residues in activity‐abolishing SNPs were conserved in animal DNase II. All the nonsynonymous SNPs that affected the catalytic activity of human DNase II showed extremely low genetic heterogeneity. However, a minor allele of seven SNPs producing a loss‐of‐function or extremely low activity‐harboring variant could serve as a genetic risk factor for autoimmune dysfunction. These functional SNPs in DNASE2 may have clinical implications in relation to the prevalence of autoimmune diseases.  相似文献   

2.
Several non‐synonymous SNPs in the human deoxyribonuclease I‐like 2 (DNase 1L2) gene responsible for DNA degradation during terminal differentiation of epidermal keratinocytes have been identified. However, only limited population data are available, and furthermore the effect of these SNPs on the DNase 1L2 activity remains unknown. Genotyping of all of the 17 SNPs was performed using the PCR‐RFLP method in three ethnic groups including 14 different populations. A series of amino acid‐substituted DNase 1L2 corresponding to each SNP was expressed, and its activity was measured. All of the six non‐synonymous SNPs exhibited a mono‐allelic distribution, whereas the distribution of some SNPs other than exonic ones was ethnicity‐dependent. Each of the minor alleles in SNPs, p.Ala20Asp, p.Val104Leu, p.Asp197Ala, p.Glu274Lys and p.Asp287Asn, among the non‐synonymous SNPs produced low or no activity‐harbouring DNase 1L2. DNase 1L2 is well conserved, retaining full levels of enzymatic activity, with regard to these exonic SNPs in human populations. It seems plausible to assume that these SNPs affecting the activity may be one of the factors responsible for a genetic pre‐disposition for failure of differentiation‐associated cell death in various keratinocyte lineages, thereby leading to the development of parakeratosis. Our results may have clinical implications in relation to the pathogenesis of parakeratosis.  相似文献   

3.
Members of the human DNase I family, DNase I‐like 1 and 2 (DNases 1L1 and 1L2), with physiological role(s) other than those of DNase I, possess three and one non‐synonymous SNPs in the genes, respectively. However, only limited population data are available, and the effect of these SNPs on the catalytic activity of the enzyme remains unknown. Genotyping of all the non‐synonymous SNPs was performed in three ethnic groups including six different populations using the PCR‐RFLP method newly developed. Asian and African groups including Japanese, Koreans, Ghanaians and Ovambos were typed as a single genotype at each SNP, but polymorphism at only SNP V122I in DNase 1L1 was found in Caucasian groups including Germans and Turks; thus a Caucasian‐specific allele was identified. The DNase 1L1 and 1L2 genes show relatively low genetic diversity with regard to these non‐synonymous SNPs. The level of activity derived from the V122I, Q170H and D227A substituted DNase 1L1 corresponding to SNPs was similar to that of the wild‐type, whereas replacement of the Asp residue at position 197 in the DNase 1L2 protein with Ala, corresponding to SNP D197A, reduced its activity greatly. Thus, SNP V122I in DNase 1L1 exhibiting polymorphism exerts no effect on the catalytic activity, and furthermore SNP D197A in DNase 1L2, affecting its catalytic activity, shows no polymorphism. These findings permit us to postulate that the non‐synonymous SNPs identified in the DNase 1L1 and 1L2 genes may exert no influence on the activity levels of DNases 1L1 and 1L2 in human populations.  相似文献   

4.
Several SNPs in the deoxyribonuclease I-like 1 (DNase 1L1) and DNase 1L2 were investigated. In the present study, the genotype distributions of three synonymous SNPs (V59V, rs1050095; P67P, rs1130929; A277A, rs17849495) in the DNase 1L1 gene and four non-synonymous SNPs, V122I (rs34952165), Q170H (rs6643670), and D227A (rs5987256) in the DNase 1L1 gene, as well as D197A (rs62621282) in the DNase 1L2 gene were investigated in 13 populations. In all the populations, no variation was found in four SNPs (V59V, Q170H, D227A, and A277A) in DNASE1L1 or in D197A in DNASE1L2. As for V122I, only the German population showed a low degree of polymorphism. The SNP V122I in DNASE1L1 was monoallelic for the G-allele in all of the Asian and African populations examined, with no polymorphism being evident. Since the A-allele in SNP V122I was distributed in only the Caucasian populations, not in the other ethnic groups, it was confirmed that the A-allele in SNP V122I was Caucasian-specific. On the other hand, only P67P in DNASE1L1 was polymorphic among three synonymous SNPs. The effect of nucleotide substitution corresponding to polymorphic SNP P67P on DNase 1L1 activity was examined: the corresponding nucleotide substitution in polymorphic SNP P67P has little effect on the DNase activity.  相似文献   

5.
Deoxyribonucleases (DNases) have been suggested to be implicated in the pathophysiology of autoimmune diseases. In the DNASE1L3 gene encoding human DNase I‐like 3 (DNase 1L3), a member of the DNase I family, only two non‐synonymous (R178 H and R206C) single nucleotide polymorphisms (SNPs) have been examined [Ueki et al., Clin. Chim. Acta 2009, 407, 20–24]. Three other non‐synonymous (G82R, K96N, and I243M) and four synonymous (S17S, T84T, R92R, and A181A) SNPs, in addition to R206C and R178H, have been identified in DNASE1L3. We investigated the distribution of all these SNPs in exons of the gene in eight Asian, three African, and three Caucasian populations worldwide using newly devised genotyping methods. SNP T84T showed polymorphism in all the populations, and R92R was polymorphic in the three African and three Caucasian populations; R206C was distributed only in Caucasian populations. In contrast, no minor allele was found in five SNPs (S17S, G82R, K96N, A181A, and I243M) in DNASE1L3. Generally, the DNase 1L3 gene shows relatively low genetic diversity with regard to exonic SNPs. When the effect of amino acid/nucleotide substitutions resulting from the SNPs on DNase 1L3 activity was examined, none of the synonymous SNPs had any effect on the DNase 1L3 activity, whereas among non‐synonymous SNPs, SNP G82R diminished the activity of the enzyme, being similar to R206C. These findings permit us to assume that, although only R206 exhibits polymorphisms in a Caucasian‐specific manner, at least SNPs G82R and R206C in DNASE1L3 might be potential risk factors for autoimmune disease.  相似文献   

6.
IL-28RA is one of the important candidate genes for complex trait of genetic diseases, but there is no published information of the genetic variation in this gene. We scanned the seven exons and their boundary introns sequence of IL-28RA including the promoter regions to analyze genetic variation sites, and identified eighteen single nucleotide polymorphisms (SNPs) and two variation sites. We chose seven SNPs (g.-1193 A>C, g.-30 C>T, g.17654 C>T, g.27798 A>G, g.31265 C>T, g.31911 C>T and g.32349 G>A) of them for large sample size genotyping, and assessed the association of genotype and allele frequencies of these SNPs between allergic rhinitis patients and non-allergic rhinitis controls. We also compared the genotype frequencies between Korean controls and Han Chinese control or Korean Chinese control. We investigated the frequencies of haplotype constructed by these SNPs between allergic rhinitis patients and non-allergic rhinitis controls. Our results suggested that the g.32349 G>A polymorphism of IL-28RA might be associated with susceptibility to allergic rhinitis (P=0.032), but seems to have no relationship with serum total IgE levels. The haplotype frequencies by these SNPs also show significant association between controls and allergic rhinitis patients.  相似文献   

7.
Although the genetic component in the etiology of rheumatoid arthritis (RA) has been consistently suggested, many novel genetic loci remain to uncover. To identify RA risk loci, we performed a genome-wide association study (GWAS) with 100 RA cases and 600 controls using Affymetrix SNP array 5.0. The candidate risk locus (APOM gene) was re-sequenced to discover novel promoter and coding variants in a group of the subjects. Replication was performed with the independent case-control set comprising of 578 RAs and 711 controls. Through GWAS, we identified a novel SNP associated with RA at the APOM gene in the MHC class III region on 6p21.33 (rs805297, odds ratio (OR) = 2.28, P = 5.20 × 10-7). Three more polymorphisms were identified at the promoter region of the APOM by the re-sequencing. For the replication, we genotyped the four SNP loci in the independent case-control set. The association of rs805297 identified by GWAS was successfully replicated (OR = 1.40, P = 6.65 × 10-5). The association became more significant in the combined analysis of discovery and replication sets (OR = 1.56, P = 2.73 × 10-10). The individuals with the rs805297 risk allele (A) at the promoter region showed a significantly lower level of APOM expression compared with those with the protective allele (C) homozygote. In the logistic regressions by the phenotype status, the homozygote risk genotype (A/A) consistently showed higher ORs than the heterozygote one (A/C) for the phenotype-positive RAs. These results indicate that APOM promoter polymorphisms are significantly associated with the susceptibility to RA.  相似文献   

8.
9.
Adult height is a highly heritable trait in that multiple genes are involved. Recent genome‐wide association studies have identified a novel single‐nucleotide polymorphism (SNP) rs1042725 in the high mobility group‐A2 gene (HMGA2) and shown it to be associated with human height in Caucasian populations. We performed a replication study to examine the associations between SNPs in HMGA2 and adult height in the Japanese population based on autopsy cases. Although we could not confirm a significant association between rs1042725 in HMGA2 and adult height, another SNP, rs7968902, in the gene achieved significance for its association in the same populations, and the effect was the same as that documented previously. These findings permit us to conclude that the SNPs in HMGA2 are common variants influencing human height across different populations. Moreover, a worldwide population study of these SNPs using 14 different populations including Asians, Africans and Caucasians demonstrated that both haplotypes and genotypes for three height‐related SNPs (rs1042725, rs7968682 and rs7968902) in HMGA2 were distributed in an ethnicity‐dependent manner. This information will be useful for clarifying the genetic basis of human height.  相似文献   

10.
Interleukin 10 (IL-10) is a potent immunosuppressive cytokine, therefore elevated IL-10 expression has been implicated in inhibition of antitumor immune response. IL-10 gene promoter polymorphism has been shown to be involved in susceptibility to skin cancers, but there has been no report focusing on susceptibility to skin cancers among non-Caucasian populations. We enrolled 129 patients with skin cancers and 50 age- and sex-matched healthy controls between April 2004 and March 2007. Genomic DNA was extracted from patients' blood samples and IL-10 promoter polymorphisms were identified using polymerase chain reaction-restriction fragment length polymorphism or direct sequencing. The distribution of the frequency of allele or haplotype of IL-10 gene promoter in Japanese was quite different from that of Europeans. No significant differences could be demonstrated in the frequency of allele or haplotype of IL-10 gene promoter between the patient group and the control group. However, the frequency of the low-IL-10 expression haplotype was significantly high in Bowen's disease subgroup. The frequency of low expression IL-10 promoter genotype was significantly less (P = 0.009, chi(2) = 6.74) in the group of nonmelanoma skin cancer generated on sun-exposed areas in comparison with that on covered areas. Our results indicated that low expression haplotype of IL-10 in Bowen's disease may inhibit the escape of tumor cells from immune surveillance, resulting in suppression of tumor growth and tumor invasion to the dermis. Moreover, high IL-10-expressing haplotype of IL-10 promoter may be a risk factor for photocarcinogenesis.  相似文献   

11.
Interleukin 33 (IL-33) is the latest member of the IL-1 cytokine family, which plays both pro - and anti-inflammatory functions. Numerous Single-nucleotide polymorphisms (SNPs) in the IL-33 gene have been recognized to be associated with a vast variety of inflammatory disorders. SNPs associated studies have become a crucial approach in uncovering the genetic background of human diseases. However, distinguishing the functional SNPs in a disease-related gene from a pool of both functional and neutral SNPs is a major challenge and needs multiple experiments of hundreds or thousands of SNPs in candidate genes. This study aimed to identify the possible deleterious SNPs in the IL-33 gene using bioinformatics predictive tools. The nonsynonymous SNPs (nsSNPs) were analyzed by SIFT, PolyPhen, PROVEAN, SNP&GO, MutPred, SNAP, PhD SNP, and I-Mutant tools. The Non-coding SNPs (ncSNPs) were also analyzed by SNPinfo and RegulomeDB tools. In conclusion, our in-silico analysis predicted 5 nsSNPs and 22 ncSNPs as potential candidates in the IL-33 gene for future genetic association studies.  相似文献   

12.
Interleukin 6 (IL6) plays an essential role in the regulation of immune response to chronic disease. In this study, the three known single nucleotide polymorphisms (SNPs) in the IL6 promoter region were genotyped in a large chronic hepatitis B cohort to evaluate the effects of IL6 promoter variants. The single base extension method was used for this genotyping. Haplotypes were constructed by the three SNPs in IL6. Allele frequencies were compared for; i) patients with chronic hepatitis (CH) and chronic carriers vs. chronic hepatis patients with clinical evidence of liver cirrhosis (LC) (i.e., portal hypertension), ii) cirrhotic patients with hepatocellular carcinoma (HCC) vs. without HCC by logistic regression, and iii) with respect to the time intervals from the onset of infection to HCC. Results were analyzed by Cox relative hazard analysis on the assumption that all the patients were infected during early infancy. The frequencies of each SNP were 0.002 (IL6-597 G>A), 0.25 (IL6-572 C>G) and 0.002 (IL6-174 G>C), respectively, in the Korean population (n = 1,046). No significant associations were detected between IL6-572 C>G and chronic hepatitis B outcome in this study; i.e., LC occurrence on CH (OR = 0.16-1.27, P = 0.13- 0.71) and HCC occurrence on LC (OR = 1.04-1.23, P = 0.89-0.60) of heterozygotes and homozygotes for G allele in referent comparison to homozygotes for common allele (C/C genotype), and time interval to HCC (RH = 0.67-1.00; P = 0.14-0.99). In conclusion, there appeared to be no significant associations between IL6 promoter variants and disease outcome in chronic hepatitis B.  相似文献   

13.
Lipid mediators are crucial for the pathogenesis of rheumatoid arthritis (RA); however, global analyses have not been undertaken to systematically define the lipidome underlying the dynamics of disease evolution, activation, and resolution. Here, we performed untargeted lipidomics analysis of synovial fluid and serum from RA patients at different disease activities and clinical phases (preclinical phase to active phase to sustained remission). We found that the lipidome profile in RA joint fluid was severely perturbed and that this correlated with the extent of inflammation and severity of synovitis on ultrasonography. The serum lipidome profile of active RA, albeit less prominent than the synovial lipidome, was also distinguishable from that of RA in the sustained remission phase and from that of noninflammatory osteoarthritis. Of note, the serum lipidome profile at the preclinical phase of RA closely mimicked that of active RA. Specifically, alterations in a set of lysophosphatidylcholine, phosphatidylcholine, ether-linked phosphatidylethanolamine, and sphingomyelin subclasses correlated with RA activity, reflecting treatment responses to anti-rheumatic drugs when monitored serially. Collectively, these results suggest that analysis of lipidome profiles is useful for identifying biomarker candidates that predict the evolution of preclinical to definitive RA and could facilitate the assessment of disease activity and treatment outcomes.Subject terms: Rheumatoid arthritis, Metabolomics  相似文献   

14.
Interferons play critical roles in tumor pathogenesis by controlling apoptosis and through cellular anti-proliferative and differentiation activities. Interferon inducible transmembrane protein (IFITM) family genes have been implicated in several cellular processes such as the homotypic cell adhesion functions of IFN and cellular anti-proliferative activities. Expression levels of IFITM genes have been found to be up-regulated in gastric cancer cells and colorectal tumors. IFITM3 (also known as 1-8U) is a member of the IFITM family, and has been described as a key player in specification of germ cell fate. IFITM3 was first isolated from a genetic screen aimed at identifying genes involved in acquisition of germ cell competence. It has been proposed that epiblast cells have the highest expression of IFITM3 initiated germ cell specification and that homotypic association can discriminate germ cells from their somatic neighbors. In an attempt to better understand the genetic influences of IFITM3 on ulcerative colitis, we have identified possible variation sites and single nucleotide polymorphisms (SNPs) through two exons and their boundary IFITM3 intron sequences including the ~2.1 kb promoter regions. To determine whether or not these IFITM3 SNPs are associated with susceptibility to ulcerative colitis, frequencies of the genotype and allele of IFITM3 polymorphisms were analyzed on genomic DNAs isolated from patients with ulcerative colitis and from healthy controls. We also investigated the haplotype frequencies constructed by these SNPs in both groups. In this study, we also showed that expression level of IFITM3 mRNA was significantly higher in tissues of the ileum and cecum of the digestive system. We identified a total of seven SNPs and multiple variation regions in the IFITM3 gene. The genotype frequency of the g.-204T>G polymorphism in patients with ulcerative colitis was significantly different from that of the control group. Our results strongly suggest that polymorphisms of the IFITM3 gene may be associated with susceptibility to ulcerative colitis.  相似文献   

15.
Zha L  Yun L  Chen P  Luo H  Yan J  Hou Y 《Electrophoresis》2012,33(5):841-848
Tri-allelic single nucleotide polymorphisms (SNPs) are potential forensic markers for DNA analysis. Currently, only a limited number of tri-allelic SNP loci have been proved to be fit for forensic application. In this study, we aimed to develop an effective method to select and genotype tri-allelic SNPs based on both Pyrosequencing (PSQ) and the SNaPshot methods. 50 candidate SNPs were chosen from NCBI's dbSNP database and were analyzed by PSQ. The results revealed that 20 SNPs were tri-allelic and were located on 16 autosomal chromosomes. Then 20 SNP loci were combined in one multiplex polymerase chain reaction to develop a single base extension (SBE)-based SNP-typing assay. A total of 100 unrelated Chinese individuals were genotyped by this assay and allele frequencies were estimated. The total discrimination power was 0.999999999975 and the cumulative probability of exclusion was 0.9937. These data demonstrated that the strategy is a rapid and effective method for seeking and typing tri-allelic SNPs. In addition, the 20 tri-allelic SNP multiplex typing assay may be used to supplement paternity testing and human identification.  相似文献   

16.
Motivated by a non-random but clustered distribution of SNPs, we introduce a phenomenological model to account for the clustering properties of SNPs in the human genome. The phenomenological model is based on a preferential mutation to the closer proximity of existing SNPs. With the Hapmap SNP data, we empirically demonstrate that the preferential model is better for illustrating the clustered distribution of SNPs than the random model. Moreover, the model is applicable not only to autosomes but also to the X chromosome, although the X chromosome has different characteristics from autosomes. The analysis of the estimated parameters in the model can explain the pronounced population structure and the low genetic diversity of the X chromosome. In addition, correlation between the parameters reveals the population-wise difference of the mutation probability. These results support the mutational non-independence hypothesis against random mutation.  相似文献   

17.
18.
19.
Lee JC  Tsai LC  Liao SP  Linacre A  Hsieh HM 《Electrophoresis》2010,31(23-24):3889-3894
We report on the polymorphisms exhibited by three hypervariable regions within the D-loop of Columba livia (pigeon) mitochondrial DNA. A total of 131 samples were taken from 131 randomly selected birds and used in the analyses of SNPs, a variable number of tandem repeats (VNTR) and an STR locus using CE. The number of repeats for the VNTR ranged from 2 to 8 producing 21 haplotypes, with 54 individuals exhibiting heteroplasmy. The STR locus exhibited multiple and continuous repeats within each individual and these patterns were not reproducible with individuals of the same maternal lineage, where different haplotypes were noted. Combining the SNP and VNTR loci produced 38 haplotypes, with the power of discrimination being 0.93. The polymorphic regions of D-loop observed in this study are potential markers for maternal relationship identification.  相似文献   

20.
Here we report an electrochemical biosensor that would allow for simple and rapid analysis of nucleic acids in combination with nuclease activity on nucleic acids and electroactive bionanoparticles. The detection of single-nucleotide polymorphisms (SNPs) using PNA probes takes advantage of the significant structural and physicochemical differences between the full hybrids and SNPs in PNA/DNA and DNA/DNA duplexes. Ferrocene-conjugated chitosan nanoparticles (Chi-Fc) were used as the electroactive indicator of hybridization. Chi-Fc had no affinity towards the neutral PNA probe immobilized on a gold electrode (AuE) surface. When the PNA probe on the electrode surface hybridized with a full-complementary target DNA, Chi-Fc electrostatically attached to the negatively-charged phosphate backbone of DNA on the surface and gave rise to a high electrochemical oxidation signal from ferrocene at ∼0.30 V. Exposing the surface to a single-stranded DNA specific nuclease, Nuclease S1, was found to be very effective for removing the nonspecifically adsorbed SNP DNA. An SNP in the target DNA to PNA made it susceptible to the enzymatic digestion. After the enzymatic digestion and subsequent exposure to Chi-Fc, the presence of SNPs was determined by monitoring the changes in the electrical current response of Chi-Fc. The method provided a detection limit of 1 fM (S/N = 3) for the target DNA oligonucleotide. Additionally, asymmetric PCR was employed to detect the presence of genetically modified organism (GMO) in standard Roundup Ready soybean samples. PNA-mediated PCR amplification of real DNA samples was performed to detect SNPs related to alcolohol dehydrogenase (ALDH). Chitosan nanoparticles are promising biometarials for various analytical and pharmaceutical applications. Figure The electrochemical method for SNP detection using PNA probes and chitosan nanoparticles takes advantage of the significant structural and physicochemical differences between PNA/DNA and DNA/DNA duplexes. Single-stranded DNA specific enzymes selectively choose these SNP sites and hydrolyze the DNA molecules on gold electrode (AuE) surface. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号