首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The molecular structure of the title tricyclic compound, C17H21NO4, which is the immediate precursor of a potent synthetic inhibitor {Lek157: sodium (8S,9R)‐10‐[(E)‐ethyl­idene]‐4‐methoxy‐11‐oxo‐1‐aza­tri­cyclo­[7.2.0.03,8]­undec‐2‐ene‐2‐carboxyl­ate} with remarkable potency, provides experimental evidence for the previously modelled relative position of the fused cyclo­hexyl ring and the carbonyl group of the β‐lactam ring, which takes part in the formation of the initial tetrahedral acyl–enzyme complex. In this hydro­phobic mol­ecule, the overall geometry is influenced by C—H?O intramolecular hydrogen bonds [3.046 (4) and 3.538 (6) Å, with corresponding normalized H?O distances of 2.30 and 2.46 Å], whereas the mol­ecules are interconnected through intermolecular C—H?O hydrogen bonds [3.335 (4)–3.575 (5) Å].  相似文献   

2.
A series of silver(I) supramolecular complexes, namely, {[Ag(L24)](NO3)}n ( 1 ), [Ag2(L24)(NO2)2]n ( 2 ), and {[Ag1.25(L24)(DMF)](PF6)1.25}n ( 3 ) were prepared by the reactions of 1‐(2‐pyridyl)‐2‐(4‐pyridyl)‐1,2,4‐triazole (L24) and silver(I) salts with different anions (AgNO3, AgNO2, AgPF6). Single‐crystal X‐ray diffraction indicates that 1 – 3 display diverse supramolecular networks. The structure of dinuclear complex 1 is composed of a six‐membered Ag2N4 ring with the Ag ··· Ag distance of 4.4137(3) Å. In complex 2 , the adjacent AgI centers are interlinked by L24 ligands into a 1D chain, the adjacent of which are further extended by the bridged nitrites to construct a 2D coordination architecture. Complex 3 shows a 3D (3,4)‐connected framework, which is generated by the linkage of L24 ligands. All complexes were characterized by IR spectra, elemental analysis, and powder X‐ray diffraction. Notably, a structural comparison of the complexes demonstrates that their structures are predominated by the nature of anions. Additionally, 1 and 2 show efficient dichromate (Cr2O72–) capture in water system, which can be ascribed to the anion‐exchange.  相似文献   

3.
The structural information gained from the study of the chiral building block (R)‐(?)‐4‐(3,4‐di­chloro­phenyl)‐4‐(2‐pyridyl)­butanoic acid–l ‐(?)‐ephedrine [methyl(1‐hydroxy‐1‐phenyl­prop‐2‐yl)ammon­ium 4‐(3,4‐di­chloro­phenyl)‐4‐(2‐pyrid­yl)but­an­oate], C10H16NO+·C15H12Cl2NO2?, can be used to deduce the absolute configuration of highly potent arpromidine‐type hist­amine H2 receptor agonists, as the chiral butanoic acid can be converted to (R)‐(?)‐3‐(3,4‐di­chloro­phenyl)‐3‐(2‐pyridyl)­propyl­amine and to the corresponding R‐configured arpromidine analogue.  相似文献   

4.
Novel optically active substituted acetylenes HC? CCH2CR1(CO2CH3)NHR2 [(S)‐/(R)‐ 1 : R1 = H, R2 = Boc, (S)‐ 2 : R1 = CH3, R2 = Boc, (S)‐ 3 : R1 = H, R2 = Fmoc, (S)‐ 4 : R1 = CH3, R2 = Fmoc (Boc = tert‐butoxycarbonyl, Fmoc = 9‐fluorenylmethoxycarbonyl)] were synthesized from α‐propargylglycine and α‐propargylalanine, and polymerized with a rhodium catalyst to provide the polymers with number‐average molecular weights of 2400–38,900 in good yields. Polarimetric, circular dichroism (CD), and UV–vis spectroscopic analyses indicated that poly[(S)‐ 1 ], poly[(R)‐ 1 ], and poly[(S)‐ 4 ] formed predominantly one‐handed helical structures both in polar and nonpolar solvents. Poly[(S)‐ 1a ] carrying unprotected carboxy groups was obtained by alkaline hydrolysis of poly[(S)‐ 1 ], and poly[(S)‐ 4b ] carrying unprotected amino groups was obtained by removal of Fmoc groups of poly[(S)‐ 4 ] using piperidine. Poly[(S)‐ 1a ] and poly[(S)‐ 4b ] also exhibited clear CD signals, which were different from those of the precursors, poly[(S)‐ 1 ] and poly[(S)‐ 4 ]. The solution‐state IR measurement revealed the presence of intramolecular hydrogen bonding between the carbamate groups of poly[(S)‐ 1 ] and poly[(S)‐ 1a ]. The plus CD signal of poly[(S)‐ 1a ] turned into minus one on addition of alkali hydroxides and tetrabutylammonium fluoride, accompanying the red‐shift of λmax. The degree of λmax shift became large as the size of cation of the additive. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
A systematic study of carbo‐butadiene motifs not embedded in an aromatic carbo‐benzene ring is described. Dibutatrienylacetylene (DBA) targets R1?C(R)?C?C?C(Ph)?C≡C?C(Ph)?C?C?C(R)?R2 are devised, in which R is C≡CSiiPr3 and R1 and R2 are R, H, or 4‐X‐C6H4, with the latter including three known representatives (X: H, NMe2, or NH2). The synthesis method is based on the SnCl2‐mediated reduction of pentaynediols prepared by early or late divergent strategies; the latter allows access to a OMe–NO2 push–pull diaryl‐DBA. If R1 and R2 are H, an over‐reduced dialkynylbutatriene (DAB) with two allenyl caps was isolated instead of the unsubstituted DBA. If R1=R2=R, the tetraalkynyl‐DBA target was obtained, along with an over‐reduced DBA product with a 12‐membered 1,2‐alkylidene‐1H2,2H2carbo‐cyclobutadiene ring. X‐ray crystallography shows that all of the acyclic DBAs adopt a planar transtransoidtrans configuration. The maximum UV/Vis absorption wavelength is found to vary consistently with the overall π‐conjugation extent and, more intriguingly, with the π‐donor character of the aryl X substituents, which varies consistently with the first (reversible) reduction potential and first (irreversible) oxidation peak, as determined by voltammetry.  相似文献   

6.
Two concomitant polymorphs, (I) and (II), of a β‐benzyl‐β‐hydroxyaspartate analogue [systematic name: dibenzyl 2‐benzyl‐2‐hydroxy‐3‐(4‐methylphenylsulfonamido)succinate], C32H31NO7S, crystallize from a mixture of ethyl acetate and cyclohexane at ambient temperature. The structure of (I) has triclinic (P) symmetry and that of (II) monoclinic (P21/c) symmetry. Both crystal structures are made up of a stacking of homochiral racemic dimers (2S,3S and 2R,3R) which are internally connected by a similar R22(9) hydrogen‐bonding pattern consisting of intermolecular N—H...O and O—H...O hydrogen bonds. The centroid of the racemic dimer lies on an inversion centre. The main structural difference between the two polymorphs is the conformational orientation of two of the four aromatic rings present in the molecule. Polymorph (II) is found to be twinned by reticular merohedry with twin index 3 and twin fractions 0.854 (1) and 0.146 (1).  相似文献   

7.
The mimicry of protein‐sized β‐sheet structures with unnatural peptidic sequences (foldamers) is a considerable challenge. In this work, the de novo designed betabellin‐14 β‐sheet has been used as a template, and α→β residue mutations were carried out in the hydrophobic core (positions 12 and 19). β‐Residues with diverse structural properties were utilized: Homologous β3‐amino acids, (1R,2S)‐2‐aminocyclopentanecarboxylic acid (ACPC), (1R,2S)‐2‐aminocyclohexanecarboxylic acid (ACHC), (1R,2S)‐2‐aminocyclohex‐3‐enecarboxylic acid (ACEC), and (1S,2S,3R,5S)‐2‐amino‐6,6‐dimethylbicyclo[3.1.1]heptane‐3‐carboxylic acid (ABHC). Six α/β‐peptidic chains were constructed in both monomeric and disulfide‐linked dimeric forms. Structural studies based on circular dichroism spectroscopy, the analysis of NMR chemical shifts, and molecular dynamics simulations revealed that dimerization induced β‐sheet formation in the 64‐residue foldameric systems. Core replacement with (1R,2S)‐ACHC was found to be unique among the β‐amino acid building blocks studied because it was simultaneously able to maintain the interstrand hydrogen‐bonding network and to fit sterically into the hydrophobic interior of the β‐sandwich. The novel β‐sandwich model containing 25 % unnatural building blocks afforded protein‐like thermal denaturation behavior.  相似文献   

8.
A novel hexa‐armed and star‐shaped polymer containing cholesterol end‐capped poly(ε‐caprolactone) arms emanating from a phosphazene core (N3P3‐(PCL‐Chol)6) was synthesized by a combination of ring‐opening polymerization and “click” chemistry techniques. For this purpose, the terminal ? OH groups of the synthesized precursor (N3P3‐(PCL‐OH)6) were converted into Chol through a series of reaction. Both N3P3‐(PCL‐OH)6 and N3P3‐(PCL‐Chol)6 were then employed in the preparation of supramolecular inclusion complexes (ICs) with β‐cyclodextrin (β‐CD). The latter formed ICs with β‐CD in higher yield. The host–guest stoichiometry (ε‐CL:β‐CD, mol:mol) in the ICs of N3P3‐(PCL‐Chol)6 was found to be 1.2. The formation of supramolecular ICs of N3P3‐(PCL‐Chol)6 with β‐CD was confirmed by using Fourier transform infrared (FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopic methods, wide‐angle X‐ray diffraction (WAXD), and thermal analysis techniques. WAXD data showed that the obtained ICs with N3P3‐(PCL‐Chol)6 had a channel‐type crystalline structure, indicating the suppression of the original crystallization of N3P3‐(PCL‐Chol)6 in β‐CD cavities. Moreover, the thermal stabilities of ICs were found to be higher than those of the free star polymer and β‐CD. Furthermore, the surface properties of N3P3‐(PCL‐Chol)6 and its ICs with β‐CD were investigated by static contact angle measurements. The obtained results proved that the wettability of N3P3‐(PCL‐Chol)6 successfully increased with the formation of its ICs with β‐CD. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3406–3420  相似文献   

9.
A tetranuclear gold cluster has been synthesized by the reaction of [Au(PPh3)NO3] with the closo carborane diphosphine 1,2-(PPh2)2-1,2-C2B10H10 in THF, and characterized by elemental analysis, FT-IR, 1H and 13C?NMR spectroscopy and X-ray structure determination. The cluster crystallizes in the triclinic Pī, a?=?15.118(8)?Å, b?=?16.057(9)?Å, c?=?24.284(13)?Å, α?=?80.822(9)°, β?=?79.624(8)°, γ?=?81.938(8)°, Z?=?2, R 1?=?0.0626, wR 2?=?0.1894. A single crystal structure determination showed that four gold atoms form a tetrahedral framework. Among these four gold atoms, two were chelated by two nido carborane diphosphine [7,8-(PPh2)2-7,8-C2B9H10]? anions coming from the degradation of the initial closo ligand 1,2-(PPh2)2-1,2-C2B10H10, while the other two were ligated to two PPh3 groups. The luminescence of this cluster was also investigated in dichloromethane solution at room temperature.  相似文献   

10.
The (3R,5′R,6′R)‐ and (3R,5′R,6′S)‐capsanthol‐3′‐one (=3,6′‐dihydroxy‐β,κ‐caroten‐3′‐one; 4 and 5 , resp.) were reduced by different complex metal hydrides containing organic ligands. The ratio of the thus obtained diastereoisomeric (3′S)‐capsanthols 2 and 3 or (3′R)‐capsanthols 6 and 7 , respectively, was investigated. Four complex hydrides showed remarkable stereoselectivity and produced the (3′R,6′S)‐capsanthol ( 6 ) in 80 – 100% (see Table 1). The starting materials and the products were characterized by UV/VIS, CD, 1H‐ and 13C‐NMR, and mass spectra.  相似文献   

11.
In this article, our main goal is to combine hyperbranched polymer with β‐cyclodextrin (β‐CD) to establish a novel functional polymer species with core‐shell structure and supramolecular system for further application in inclusion technologies and the complex drugs delivery system. Therefore, two β‐CD polymer brushes based on hyperbranched polycarbosilane (HBP) as a hydrophobic core and poly(N,N‐dimethylaminoethyl methacrylate) (PDMA) carrying β‐CD units as a hydrophilic shell were synthesized. Hyperbranched polycarbosilane macroinitiator carrying ? Cl groups (HBP‐Cl) was also prepared by using 1,1,3,3‐tetrmethyldisiloxane, allyl alcohol, and chloroacetyl chloride as reagents. The molecular structures of HBP‐Cl macroinitiator and β‐CD polymer brushes were characterized by Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR) spectroscopies, size exclusion chromatography/multi‐angle laser light scattering (SEC/MALLS) and laser particle size analyzer. The results indicate that the grafted chain length of two β‐CD polymer brushes can be controlled by changing the feed ratio. Differential scanning calorimetry (DSC) results show that two β‐CD polymer brushes have two glass transition temperatures (Tgs) from a hydrophobic core part and a hydrophilic shell part, respectively, and the Tg from PDMA is higher than that of HBP‐g‐PDMA. Thermalgravimetric analyzer (TGA) analysis indicates that the thermostability of two β‐CD polymer brushes is higher than that of HBP, but is lower than that of HBP‐g‐PDMA. Using phenolphthalein (PP) as a guest molecule, molecular inclusion behaviors for two β‐CD polymer brushes were studied. It reveals that two β‐CD polymer brushes possess molecular inclusion capability in PP buffer solution with a fixed concentration. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5036–5052, 2008  相似文献   

12.
To study the conversion from a meso form to a racemic form of tetrahydrofurantetracarboxylic acid (H4L), seven novel coordination polymers were synthesized by the hydrothermal reaction of Zn(NO3)2 ? 6 H2O with (2S,3S,4R,5R)‐H4L in the presence of 1,10‐phenanthroline (phen), 2,2′‐bipyridine (2,2′‐bpy), or 4,4′‐bipyridine (4,4′‐bpy): [Zn2{(2S,3S,4R,5R)‐L}(phen)2(H2O)] ? 2 H2O ( 1 ), [Zn4{(2S,3R,4R,5R)‐L}{(2S,3S,4S,5R)‐L}(phen)2(H2O)2] ( 2 ), [Zn2{(2S,3S,4R,5R)‐L}(H2O)2] ? H2O ( 3 ), [Zn4{(2S,3R,4R,5R)‐L}{(2S,3S,4S,5R)‐L} (2,2′‐bpy)2(H2O)2] ? 2 H2O ( 4 ), [Zn2 {(2S,3S,4R,5R)‐L}(2,2′‐bpy)(H2O)] ( 5 ), [Zn4{(2S,3R,4R,5R)‐L}{(2S,3S,4S,5R)‐L} (4,4′‐bpy)2(H2O)2] ( 6 ), and [Zn2 {(2S,3S,4R,5R)‐L}(4,4′‐bpy)(H2O)] ? 2 H2O ( 7 ). These complexes were obtained by control of the pH values of reaction mixtures, with an initial of pH 2.0 for 1 , 2.5 for 2 , 4 , and 6 , and 4.5 for 3 , 5 , and 7 , respectively. The expected configuration conversion has been successfully realized during the formation of 2 , 4 , and 6 , and the enantiomers of L, (2S,3R,4R,5R)‐L and (2S,3S,4S,5R)‐L, are trapped in them, whereas L ligands in the other four complexes retain the original meso form, which indicates that such a conversion is possibly pH controlled. Acid‐catalyzed enol–keto tautomerism has been introduced to explain the mechanism of this conversion. Complex 1 features a simple 1D metal–L chain that is extended into a 3D supramolecular structure by π–π packing interactions between phen ligands and hydrogen bonds. Complex 2 has 2D racemic layers that consist of centrosymmetric bimetallic units, and a final 3D supramolecular framework is formed by the interlinking of these layers through π–π packing interactions of phen. Complex 3 is a 3D metal–organic framework (MOF) involving meso‐L ligands, which can be regarded as (4,6)‐connected nets with vertex symbol (45.6)(47.68). Complexes 4 and 5 contain 2D racemic layers and (6,3)‐honeycomb layers, respectively, both of which are combined into 3D supramolecular structures through π–π packing interactions of 2,2′‐bpy. The structure of complex 6 is a 2D network formed by 4,4′‐bpy bridging 1D tubes, which consist of metal atoms and enantiomers of L. These layers are connected through hydrogen bonds to give the final 3D porous supramolecular framework of 6 . Complex 7 is a 3D MOF with novel (3,4,5)‐connected (63)(42.64)(42.66.82) topology. The thermal stability of these compounds was also investigated.  相似文献   

13.
X‐ray studies reveal that tert‐butyl (6S)‐6‐iso­butyl‐2,4‐dioxo­piperidine‐1‐carboxyl­ate occurs in the 4‐enol form, viz. tert‐butyl (6S)‐4‐hydroxy‐6‐iso­butyl‐2‐oxo‐1,2,5,6‐tetra­hydropyri­dine‐1‐carboxyl­ate, C14H23NO4, when crystals are grown from a mixture of di­chloro­methane and pentane, and has an axial orientation of the iso­butyl side chain at the 6‐position of the piperidine ring. Reduction of the keto functionality leads predominantly to the corresponding β‐hydroxy­lated δ‐lactam, tert‐butyl (4R,6S)‐4‐hydroxy‐6‐iso­butyl‐2‐oxo­piperidine‐1‐car­boxyl­ate, C14H25NO4, with a cis configuration of the 4‐hydroxy and 6‐iso­butyl groups. The two compounds show similar molecular packing driven by strong O—H⋯O=C hydrogen bonds, leading to infinite chains in the crystal structure.  相似文献   

14.
Four ZnII/CdII coordination polymers (CPs) based on 2‐(4‐carboxy‐phenyl)imidazo[4, 5‐f]‐1, 10‐phenanthroline (HNCP) and different derivatives of 5‐R‐1, 3‐benzenedicarboxylate (5‐R‐1, 3‐BDC) (R = NO2, H, OH), [Zn(HNCP)(5‐NO2‐1, 3‐BDC)]n ( 1 ), [Cd(HNCP)(5‐NO2‐1, 3‐BDC)]n ( 2 ), [Zn(HNCP)(1, 3‐BDC)(H2O)2]n ( 3 ), and {[Zn(HNCP)(5‐OH‐1, 3‐BDC)(H2O) · H2O}n ( 4 ) were synthesized under hydrothermal conditions. Compounds 1 – 4 were determined by elemental analyses, IR spectroscopy, and single‐crystal and powder X‐ray diffraction. Compounds 1 and 2 are isomorphous, presenting a 4‐connected uninodal (4, 4)‐sql 2D framework with threefold interpenetration, which are further extended into the three‐dimensional (3D) supramolecular architecture through π ··· π stacking interactions between the aryl rings of 5‐NO2‐1, 3‐BDC. Compared to compound 1 , 3 is obtained by using different reaction temperatures and metal‐ligand ratios, generating a 3D framework with –ABAB– fashion via π ··· π stacking interactions. Compound 4 is a 1D chain, which is further extended into a 3D supramolecular net by hydrogen bonds and π ··· π stacking interactions. The thermogravimetric and fluorescence properties of 1 – 4 were also explored.  相似文献   

15.
The preparation of (2S,3S)‐ and (2R,3S)‐2‐fluoro and of (3S)‐2,2‐difluoro‐3‐amino carboxylic acid derivatives, 1 – 3 , from alanine, valine, leucine, threonine, and β3h‐alanine (Schemes 1 and 2, Table) is described. The stereochemical course of (diethylamino)sulfur trifluoride (DAST) reactions with N,N‐dibenzyl‐2‐amino‐3‐hydroxy and 3‐amino‐2‐hydroxy carboxylic acid esters is discussed (Fig. 1). The fluoro‐β‐amino acid residues have been incorporated into pyrimidinones ( 11 – 13 ; Fig. 2) and into cyclic β‐tri‐ and β‐tetrapeptides 17 – 19 and 21 – 23 (Scheme 3) with rigid skeletons, so that reliable structural data (bond lengths, bond angles, and Karplus parameters) can be obtained. β‐Hexapeptides Boc[(2S)‐β3hXaa(αF)]6OBn and Boc[β3hXaa(α,αF2)]6‐OBn, 24 – 26 , with the side chains of Ala, Val, and Leu, have been synthesized (Scheme 4), and their CD spectra (Fig. 3) are discussed. Most compounds and many intermediates are fully characterized by IR‐ and 1H‐, 13C‐ and 19F‐NMR spectroscopy, by MS spectrometry, and by elemental analyses, [α]D and melting‐point values.  相似文献   

16.
Depsipeptides and cyclodepsipeptides are analogues of the corresponding peptides in which one or more amide groups are replaced by ester functions. Reports of crystal structures of linear depsipeptides are rare. The crystal structures and conformational analyses of four depsipeptides with an alternating sequence of an α,α‐disubstituted α‐amino acid and an α‐hydroxy acid are reported. The molecules in the linear hexadepsipeptide amide in (S)‐Pms‐Acp‐(S)‐Pms‐Acp‐(S)‐Pms‐Acp‐NMe2 acetonitrile solvate, C47H58N4O9·C2H3N, ( 3b ), as well as in the related linear tetradepsipeptide amide (S)‐Pms‐Aib‐(S)‐Pms‐Aib‐NMe2, C28H37N3O6, ( 5a ), the diastereoisomeric mixture (S,R)‐Pms‐Acp‐(R,S)‐Pms‐Acp‐NMe2/(R,S)‐Pms‐Acp‐(R,S)‐Pms‐Acp‐NMe2 (1:1), C32H41N3O6, ( 5b ), and (R,S)‐Mns‐Acp‐(S,R)‐Mns‐Acp‐NMe2, C30H37N3O6, ( 5c ) (Pms is phenyllactic acid, Acp is 1‐aminocyclopentanecarboxylic acid and Mns is mandelic acid), generally adopt a β‐turn conformation in the solid state, which is stabilized by intramolecular N—H…O hydrogen bonds. Whereas β‐turns of type I (or I′) are formed in the cases of ( 3b ), ( 5a ) and ( 5b ), which contain phenyllactic acid, the torsion angles for ( 5c ), which incorporates mandelic acid, indicate a β‐turn in between type I and type III. Intermolecular N—H…O and O—H…O hydrogen bonds link the molecules of ( 3a ) and ( 5b ) into extended chains, and those of ( 5a ) and ( 5c ) into two‐dimensional networks.  相似文献   

17.
A new series of nitro‐substituted bis(imino)pyridine ligands {2,6‐bis[1‐(2‐methyl‐4‐nitrophenylimino)ethyl]pyridine, 2,6‐bis[1‐(4‐nitrophenylimino)ethyl]pyridine, (1‐{6‐[1‐(4‐nitro‐phenylimino)‐ethyl]‐pyridin‐2‐yl}‐ethylidene)‐(2,4,6‐trimethyl‐phenyl)‐amine, and 2,6‐bis[1‐(2‐methyl‐3‐nitrophenylimino)ethyl]pyridine} and their corresponding Fe(II) complexes [{p‐NO2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐ Me? p‐NO2}FeCl2 ( 10 ), L2FeCl2 ( 11 ), {m‐NO2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me? m‐NO2}FeCl2 ( 12 ), and {p‐NO2? Ph? N?C(Me)? Py? C(Me)?N? Mes}FeCl2 ( 14 )] were synthesized. According to X‐ray analysis, there were shortenings of the axial Fe? N bond lengths (up to 0.014 Å) in para‐nitro‐substituted complex 10 and (up to 0.015 Å) in meta‐nitro‐substituted complex 12 versus the Fe(II) complex without nitro groups [{o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me}FeCl2 ( 1 )]. Complexes 10 , 12 , and 14 afforded very active catalysts for the production of α‐olefins and were more temperature‐stable and had longer lifetimes than parent non‐nitro‐substituted Fe(II) complex 1 . The reaction between FeCl2 and a sterically less hindered ligand [p‐NO2? Ph? N?C(Me)? Py? C(Me)?N? Ph? p‐NO2] resulted in the formation of octahedral complex 11 . A para‐dialkylamino‐substituted bis(imino)pyridine ligand [p‐NEt2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me? p‐NEt2] and the corresponding Fe(II) complex [{p‐NEt2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me? p‐NEt2}FeCl2 ( 16 )] were synthesized to evaluate the effect of enhanced electron donation of the ligand on the catalytic performance. According to X‐ray analysis, there was a shortening (up to 0.043 Å) of the axial Fe? N bond lengths in para‐diethylamino‐substituted complex 16 in comparison with parent Fe(II) complex 1 . © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2615–2635, 2006  相似文献   

18.
A 2 : 4 mixture of tetrakis[4‐(4‐pyridyl)phenyl]cavitand ( 1 ) or tetrakis[4‐(4‐pyridyl)phenylethynyl]cavitand ( 2 ) and Pd(dppp)(OTf)2 self‐assembles into a homocapsule { 1 2 ? [Pd(dppp)]4}8+ ? (TfO?)8 ( C1 ) or { 2 2 ? [Pd(dppp)]4}8+ ? (TfO?)8 ( C2 ), respectively, through Pd?Npy coordination bonds. A 1 : 1 : 4 mixture of 1 , 2 , and Pd(dppp)(OTf)2 produced a mixture of homocapsules C1 , C2 , and a heterocapsule { 1 ? 2 ? [Pd(dppp)]4}8+ ? (TfO?)8 ( C3 ) in a 1 : 1 : 0.98 mole ratio. Selective formation (self‐sorting) of homocapsules C1 and C2 or heterocapsule C3 was controlled by guest‐induced encapsulation under thermodynamic control. Applications of Pd?Npy coordination capsules with the use of 1 were demonstrated. Capsule C1 serves as a guard nanocontainer for trans‐4,4′‐diacetoxyazobenzene to protect against the trans‐to‐cis photoisomerization by encapsulation. A chiral capsule { 1 2 ? [Pd((R)‐BINAP)]4}8+ ? (TfO?)8 ( C5 ) was also constructed. Capsule C5 induces supramolecular chirality with respect to prochiral 2,2′‐bis(alkoxycarbonyl)‐4,4′‐bis(1‐propynyl)biphenyls by diastereomeric encapsulation through the asymmetric suppression of rotation around the axis of the prochiral biphenyl moiety.  相似文献   

19.
This paper describes the development of novel aromatic platforms for supramolecular construction. By the Suzuki cross‐coupling protocol, a variety of functionalized m‐terphenyl derivatives were prepared (Schemes 1–4). Macrolactamization of bis(ammonium salt) (S,S)‐ 6 with bis(acyl halide) 7 afforded the macrocyclic receptor (S,S)‐ 2 (Scheme 1), which was shown by 1H‐NMR titration studies to form ‘nesting' complexes of moderate stability (Ka between 130 and 290 M ?1, 300 K) with octyl glucosides 13 – 15 (Fig. 2) in the noncompetitive solvent CDCl3. Suzuki cross‐coupling starting from 3,3′,5,5′‐tetrabromo‐1,1′‐biphenyl provided access to a novel series of extended aromatic platforms (Scheme 5) for cleft‐type (Fig. 1) and macrotricyclic receptors such as (S,S,S,S)‐ 1 . Although mass‐spectral evidence for the formation of (S,S,S,S)‐ 1 by macrolactamization between the two functionalized 3,3′,5,5′‐tetraaryl‐1,1′‐biphenyl derivatives (S,S)‐ 33 and 36 was obtained, the 1H‐ and 13C‐NMR spectra of purified material remained rather inconclusive with respect to both purity and constitution. The versatile access to the novel, differentially functionalized 3,3′,5,5′‐tetrabromo‐1,1′‐biphenyl platforms should ensure their wide use in future supramolecular construction.  相似文献   

20.
The chiral compounds (R)‐ and (S)‐1‐benzoyl‐2,3,5,6‐tetrahydro‐3‐methyl‐2‐(1‐methylethyl)pyrimidin‐4(1H)‐one ((R)‐ and (S)‐ 1 ), derived from (R)‐ and (S)‐asparagine, respectively, were used as convenient starting materials for the preparation of the enantiomerically pure α‐alkylated (alkyl=Me, Et, Bn) α,β‐diamino acids (R)‐ and (S)‐ 11 – 13 . The chiral lithium enolates of (R)‐ and (S)‐ 1 were first alkylated, and the resulting diasteroisomeric products 5 – 7 were aminated with ‘di(tert‐butyl) azodicarboxylate’ (DBAD), giving rise to the diastereoisomerically pure (≥98%) compounds 8 – 10 . The target compounds (R)‐ and (S)‐ 11 – 13 could then be obtained in good yields and high purities by a hydrolysis/hydrogenolysis/hydrolysis sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号