首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amine‐catalyzed enantioselective Michael addition of aldehydes to nitro alkenes (Scheme 1) is known to be acid‐catalyzed (Fig. 1). A mechanistic investigation of this reaction, catalyzed by diphenylprolinol trimethylsilyl ether is described. Of the 13 acids tested, 4‐NO2? C6H4OH turned out to be the most effective additive, with which the amount of catalyst could be reduced to 1 mol‐% (Tables 25). Fast formation of an amino‐nitro‐cyclobutane 12 was discovered by in situ NMR analysis of a reaction mixture. Enamines, preformed from the prolinol ether and aldehydes (benzene/molecular sieves), and nitroolefins underwent a stoichiometric reaction to give single all‐trans‐isomers of cyclobutanes (Fig. 3) in a [2+2] cycloaddition. This reaction was shown, in one case, to be acid‐catalyzed (Fig. 4) and, in another case, to be thermally reversible (Fig. 5). Treatment of benzene solutions of the isolated amino‐nitro‐cyclobutanes with H2O led to mixtures of 4‐nitro aldehydes (the products 7 of overall Michael addition) and enamines 13 derived thereof (Figs. 69). From the results obtained with specific examples, the following tentative, general conclusions are drawn for the mechanism of the reaction (Schemes 2 and 3): enamine and cyclobutane formation are fast, as compared to product formation; the zwitterionic primary product 5 of C,C‐bond formation is in equilibrium with the product of its collapse (the cyclobutane) and with its precursors (enamine and nitro alkene); when protonated at its nitronate anion moiety the zwitterion gives rise to an iminium ion 6 , which is hydrolyzed to the desired nitro aldehyde 7 or deprotonated to an enamine 13 . While the enantioselectivity of the reaction is generally very high (>97% ee), the diastereoselectivity depends upon the conditions, under which the reaction is carried out (Fig. 10 and Tables 15). Various acid‐catalyzed steps have been identified. The cyclobutanes 12 may be considered an off‐cycle ‘reservoir’ of catalyst, and the zwitterions 5 the ‘key players’ of the process (bottom part of Scheme 2 and Scheme 3).  相似文献   

2.
The stoichiometric reactions of enamines prepared from aldehydes and diphenyl‐prolinol silyl ethers (intermediates of numerous organocatalytic processes) with nitro olefins have been investigated. As reported in the last century for simple achiral and chiral enamines, the products are cyclobutanes ( 4 with monosubstituted nitro‐ethenes), dihydro‐oxazine N‐oxide derivatives ( 5 with disubstituted nitro‐ethenes), and nitro enamines derived from γ‐nitro aldehydes ( 6 , often formed after longer reaction times). The same types of products were shown to be formed, when the reactions were carried out with peptides H‐Pro‐Pro‐Xaa‐OMe that lack an acidic H‐atom. Functionalized components such as alkoxy enamines, nitro‐acrylates, acetamido‐nitro‐ethylene, or hydroxylated nitro olefins also form products carrying the diphenyl‐prolinol silyl ether as a substituent. All of these products must be considered intermediates in the corresponding catalytic reactions; the investigation of their chemical properties provided useful hints about the rates, the conditions, the catalyst resting states or irreversible traps, and/or the limitations of the corresponding organocatalytic processes. High‐level DFT and MP2 computations of the structures of alkoxy enamines and thermodynamic data of a cyclobutane dissociation are also described. Some results obtained with the stoichiometrically prepared intermediates are not compatible with previous mechanistic proposals and assumptions.  相似文献   

3.
Several typical 13C‐NMR displacements (of C?O, C(α), C(β), and Cipso), as well as conformational or energy properties (S? N? C?O dihedral angle, ΔE syn/anti; HOMO/LUMO) could be correlated with the electronic parameters of p‐substituted N‐cinnamoylbornane‐10,2‐sultams 2 . Even under nonchelating conditions, the pyramidalization of the sultam N‐atom decreases for electron‐attracting p‐substituents, inducing a modification of the sultam‐ring puckering. Detailed comparison of the X‐ray structure analyses of 2b, 2d , and 2m showed that the orientation of the sterically directing pseudo‐axial S?O(2) and H? C(2) is modified and precludes any conclusion about the π‐facial stereoelectronic influence of the N lone pair on the alkyl Grignard 1,4‐addition. We also showed that the aggregating alkyl Grignard reagent may be used in equimolar fashion, demonstrating that the sultam moiety is chelated with a Lewis acid such as MgBr2. The Schlenk equilibrium may also be used to generate the appropriate conditions of effective 1,4‐diastereoselectivity. Although the anti‐s‐cis/syn‐s‐cis difference of conformational energies for N‐cinnamoyl derivatives 2 is higher than for the simple N‐crotonoyl analogue, an X‐ray structure analysis of the SO2/C?O syn derivative 10 confirms the predictive validity of our conformational calculations for ΔE≤1.8 kcal/mol.  相似文献   

4.
Preparations of the title compounds, 5 – 7 (Scheme 1 and Table 1), of their ammonium salts, 9 – 11 (Scheme 2 and Table 2), and of the corresponding cinnamaldehyde‐derived iminium salts 12 – 14 (Scheme 3 and Table 3) are reported. The X‐ray crystal structures of 15 cinnamyliminium PF6 salts have been determined (Table 4). Selected 1H‐NMR data (Table 5) of the ammonium and iminium salts are discussed, and structures in solution are compared with those in the solid state.  相似文献   

5.
The asymmetric Michael reaction of nitroalkanes and β,β‐disubstituted α,β‐unsaturated aldehydes was catalyzed by diphenylprolinol silyl ether to afford 1,4‐addition products with an all‐carbon quaternary stereogenic center with excellent enantioselectivity. The reaction is general for β‐substituents such as β‐aryl and β‐alkyl groups, and both nitromethane and nitroethane can be employed. The addition of nitroethane is considered a synthetic equivalent of the asymmetric Michael reaction of ethyl and acetyl substituents by means of radical denitration and Nef reaction, respectively. The short asymmetric synthesis of (S)‐ethosuximide with a quaternary carbon center was accomplished by using the present asymmetric Michael reaction as the key step. The reaction mechanism that involves the E/Z isomerization of α,β‐unsaturated aldehydes, the retro‐Michael reaction, and the different reactivity between nitromethane and nitroethane is discussed.  相似文献   

6.
The structures of iminium salts formed from diarylprolinol or imidazolidinone derivatives and α,β‐unsaturated aldehydes have been studied by X‐ray powder diffraction (Fig. 1), single‐crystal X‐ray analyses (Table 1), NMR spectroscopy (Tables 2 and 3, Figs. 2–7), and DFT calculations (Helv. Chim. Acta 2009 , 92, 1, 1225, 2010 , 93, 1; Angew. Chem., Int. Ed. 2009 , 48, 3065). Almost all iminium salts of this type exist in solution as diastereoisomeric mixtures with (E)‐ and (Z)‐configured +NC bond geometries. In this study, (E)/(Z) ratios ranging from 88 : 12 up to 98 : 2 (Tables 2 and 3) and (E)/(Z) interconversions (Figs. 2–7) were observed. Furthermore, the relative rates, at which the (E)‐ and (Z)‐isomers are formed from ammonium salts and α,β‐unsaturated aldehydes, were found to differ from the (E)/(Z) equilibrium ratio in at least two cases (Figs. 4 and 5, a, and Fig. 6, a); more (Z)‐isomer is formed kinetically than corresponding to its equilibrium fraction. Given that the enantiomeric product ratios observed in reactions mediated by organocatalysts of this type are often ≥99 : 1, the (E)‐iminium‐ion intermediates are proposed to react with nucleophiles faster than the (Z)‐isomers (Scheme 5 and Fig. 8). Possible reasons for the higher reactivity of (E)‐iminium ions (Figs. 8 and 9) and for the kinetic preference of (Z)‐iminium‐ion formation are discussed (Scheme 4). The results of related density functional theory (DFT) calculations are also reported (Figs. 10–13 and Table 4).  相似文献   

7.
A new catalytic asymmetric desymmetrization reaction for the synthesis of enantioenriched derivatives of 2‐azabicyclo[3.3.1]nonane, a key motif common to many alkaloids, has been developed. Employing a cyclohexanediamine‐derived primary amine organocatalyst, a range of prochiral cyclohexanone derivatives possessing an α,β‐unsaturated ester moiety linked to the 4‐position afforded the bicyclic products, which possess three stereogenic centers, as single diastereoisomers in high enantioselectivity (83–99 % ee) and in good yields (60–90 %). Calculations revealed that stepwise C? C bond formation and proton transfer via a chair‐shaped transition state dictate the exclusive endo selectivity and enabled the development of a highly enantioselective primary amine catalyst.  相似文献   

8.
9.
Direct and enantioselective : Diphenylprolinol silyl ether was found to catalyze the direct, asymmetric Michael reaction of 4‐substituted 2‐aryl‐2‐oxazoline‐5‐one and α,β‐unsaturated aldehydes, affording the chiral α,α‐disubstituted α‐amino acid derivatives with excellent enantioselectivity.

  相似文献   


10.
Several reactions of the α,β‐unsaturated thioamide 8 with diazo compounds 1a – 1d were investigated. The reactions with CH2N2 ( 1a ), diazocyclohexane ( 1b ), and phenyldiazomethane ( 1c ) proceeded via a 1,3‐dipolar cycloaddition of the diazo dipole at the C?C bond to give the corresponding 4,5‐dihydro‐1H‐pyrazole‐3‐carbothioamides 12a – 12c , i.e., the regioisomer which arose from the bond formation between the N‐terminus of the diazo compound and the C(α)‐atom of 8 . In the reaction of 1a with 8 , the initially formed cycloadduct, the 4,5‐dihydro‐3H‐pyrazole‐3‐carbothioamide 11a , was obtained after a short reaction time. In the case of 1c , two tautomers 12c and 12c ′ were formed, which, by derivatization with 2‐chlorobenzoyl chloride 14 , led to the crystalline products 15 and 15 ′. Their structures were established by X‐ray crystallography. From the reaction of 8 and ethyl diazoacetate ( 1d ), the opposite regioisomer 13 was formed. The monosubstituted thioamide 16 reacted with 1a to give the unstable 4,5‐dihydro‐1H‐pyrazole‐3‐carbothioamide 17 .  相似文献   

11.
12.
13.
A series of new optically active 1H‐imidazole 3‐oxides 5 with a substituted acetate group at N(1) as the chiral unit were prepared by the reaction of α‐(hydroxyimino) ketones, α‐amino acid methyl esters, and formaldehyde. In an analogous reaction, ethyl 2‐(hydroxyimino)‐3‐oxobutyrate and 1,3,5‐trialkylhexahydro‐1,3,5‐triazines gave 3‐oxido‐1H‐imidazole‐4‐carboxylates 14 , which easily rearranged into the 2‐oxo derivatives 15 . Selected examples of N‐oxides 5 could be transformed into the corresponding 2,3‐dihydro‐1H‐imidazole‐2‐thione derivatives 10 via a ‘sulfur‐transfer reaction’, and the reduction of the histidine derivative 5i with Raney‐Ni yielded the optically active 2,3‐bis(imidazolyl)propanoate 12 . Furthermore, reaction of the (1H‐imidazol‐1‐yl)acetates with primary amines yielded the corresponding acetamides.  相似文献   

14.
Two N3O2 pentadentate ligands, BMPP and BPPP, were prepared for synthesizing highly efficient nickel catalysts, [Ni(BMPP)(CH3CN)](ClO4)2 ( 1 ) and [Ni(BPPP)(CH3CN)](BPh4)(ClO4) ( 2 ), for thia‐Michael addition of thiophenols to α,β‐enones. X‐ray structures of 1 and 2 revealed that a labile CH3CN molecule was bound to the nickel center of the catalysts. ESI‐MS spectroscopy indicated that thiolate replaced the bound CH3CN molecule and coordinated to the nickel center during the catalytic cycle.  相似文献   

15.
16.
17.
18.
本论文研究了KF-蒙脱土催化下丙二腈与α,β-不饱和酮的迈克尔加成反应,研究发现在不同的反应温度下可以得到加成和环化两种不同的产物。该方法和现有的方法相比具有产率高、反应条件温和、操作简单、试剂易得等优点。  相似文献   

19.
A solvent‐free and highly efficient protocol has been developed for the synthesis of novel bis‐Michael addition products ( 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i , 3j , 3k , 3l , 3m , 3n , 3o ) using aminopropylated PEG‐6000 (NH2‐PEG) as a biodegradable and recyclable catalyst in excellent yields under solvent‐free conditions. Other remarkable features of this environmentally benign protocol are shorter reaction time, tolerance of a wide range of C―H‐activated acids, high yield of products, and simple experimental and work‐up procedure as compared to conventional methods. The NH2‐PEG catalyst is characterized by using FT‐IR, powder XRD and scanning electron microscopy–energy dispersion X‐ray spectrometric analyses. The catalyst can be recycled several times without significant loss of its catalytic activity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Conjugated N‐acyl pyrazoles have been successfully employed in the organocatalytic enantioselective intramolecular aza‐Michael reaction as ester surrogates. Bifunctional squaramides under microwave irradiation provided the best results in this transformation. Furthermore, this protocol has been combined with a peptide‐coupling reaction in a tandem sequence. The final products were easily converted into the corresponding ethyl esters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号